A population model for $\Lambda$-coalescents with neutral mutations
Abstract
Bertoin and Le Gall (2003) introduced a certain probability measure valued Markov process that describes the evolution of a population, such that a sample from this population would exhibit a genealogy given by the so-called $\Lambda$-coalescent, or coalescent with multiple collisions, introduced independently by Pitman (1999) and Sagitov (1999). We show how this process can be extended to the case where lineages can experience mutations. Regenerative compositions enter naturally into this model, which is somewhat surprising, considering a negative result by Möhle (2007).
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 9-20
Publication Date: February 4, 2007
DOI: 10.1214/ECP.v12-1245
References
- Bertoin, Jean; Le Gall, Jean-François. Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 (2003), no. 2, 261--288. MR1990057 http://www.ams.org/mathscinet-getitem?mr=1990057
- Dong, Rui; Gnedin, Alexander; Pitman, Jim. Exchangeable partitions derived from Markovian coalescents. Ann. Appl. Probab. 17 (2007), no. 4, 1172--1201. MR2344303 http://front.math.ucdavis.edu/math.PR/0603745
- Gnedin, Alexander; Pitman, Jim. Regenerative composition structures. Ann. Probab. 33 (2005), no. 2, 445--479. MR2122798 http://www.ams.org/mathscinet-getitem?mr=2122798
- Kingman, J. F. C. The coalescent. Stochastic Process. Appl. 13 (1982), no. 3, 235--248. MR0671034 http://www.ams.org/mathscinet-getitem?mr=0671034
- Kingman, J. F. C. Poisson processes. Oxford Studies in Probability, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. viii+104 pp. ISBN: 0-19-853693-3 MR1207584 http://www.ams.org/mathscinet-getitem?mr=1207584
- Möhle, M. On sampling distributions for coalescent processes with simultaneous multiple collisions. Bernoulli 12 (2006), no. 1, 35--53. MR2202319 http://www.ams.org/mathscinet-getitem?mr=2202319
- Möhle, Martin. On a class of non-regenerative sampling distributions. Combin. Probab. Comput. 16 (2007), no. 3, 435--444. MR2312437 http://dx.doi.org/10.1017/S0963548306008212
- Möhle, Martin; Sagitov, Serik. A classification of coalescent processes for haploid exchangeable population models. Ann. Probab. 29 (2001), no. 4, 1547--1562. MR1880231 http://www.ams.org/mathscinet-getitem?mr=1880231
- Pitman, Jim. Coalescents with multiple collisions. Ann. Probab. 27 (1999), no. 4, 1870--1902. MR1742892 http://www.ams.org/mathscinet-getitem?mr=1742892
- Sagitov, Serik. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 (1999), no. 4, 1116--1125. MR1742154 http://www.ams.org/mathscinet-getitem?mr=1742154
- Schweinsberg, Jason. Coalescents with simultaneous multiple collisions. Electron. J. Probab. 5 (2000), Paper no. 12, 50 pp. (electronic). MR1781024 http://www.math.washington.edu/~ejpecp/ http://www.ams.org/mathscinet-getitem?mr=1781024

This work is licensed under a Creative Commons Attribution 3.0 License.