Connected allocation to Poisson points in $\mathbb{R}^2$
Abstract
This note answers one question in [1] concerning the connected allocation for the Poisson process in $\mathbb{R}^2$. The proposed solution makes use of the Riemann map from the plane minus the minimal spanning forest of the Poisson point process to the halfplane. A picture of a numerically simulated example is included.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 140-145
Publication Date: May 8, 2007
DOI: 10.1214/ECP.v12-1268
References
- C. Hoffman, A.E. Holroyd, Y. Peres. A stable marriage of Poisson and Lebesgue. Ann. Probab. 34 (2006), 1241--1272. Math. Review 2257646
- K.S. Alexander. Percolation and minimal spanning forests in infinite graphs. Ann. Probab. 23 (1995), 87--104. Math. Review 1330762
- S. Chatterjee, R. Peled, Y. Peres, D. Romik. Gravitational allocation to Poisson points (2006), math.PR/0611886
- R. Lyons, Y. Peres, O. Schramm. Minimal spanning forests. Ann. Probab. 34 (2006), 1665--1692. Math. Review 2271476
- D.E. Marshall, S. Rohde. Convergence of the zipper algorithm for conformal mapping (2006), math.CV/0605532

This work is licensed under a Creative Commons Attribution 3.0 License.