Large deviation principles for Markov processes via Phi-Sobolev inequalities
Nian Yao (Wuhan University)
Abstract
Via Phi-Sobolev inequalities, we give some sharp integrability conditions on $F$ for the large deviation principle of the empirical mean $\frac{1}{T}{\int_{0}^{T}{F(X_{s})}ds}$ for large time $T$, where $F$ is unbounded with values in some separable Banach space. Several examples are provided.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 10-23
Publication Date: January 2, 2008
DOI: 10.1214/ECP.v13-1342
References
- R. F. Barthe, P. Cattiaux and C. Roberto, Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry, Rev. Mat. Iberoamericana 22 (2006), no. 3, 993--1067. MR2320410
- S. Bobkov and F. G"otze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal. 163 (1999), no. 1, 1--28. MR1682772
- P. Cattiaux and A. Guillin, Deviation bounds for additive functionals of Markov process, Preprint 2006.
- D. Chafa"i, Entropies, convexity, and functional inequalities: on $Phi$-entropies and $Phi$-Sobolev inequalities, J. Math. Kyoto Univ. 44 (2004), no. 2, 325--363. MR2081075
- M.F. Chen, Eigenvalues, Inequalities and Ergodic Theory, Springer-Verlag London, Ltd., London, 2005. MR2105651
- E.B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, 92. Cambridge University Press, Cambridge, 1990. MR1103113
- J.D. Deuschel and D.W. Stroock, Large deviations, Pure and Appl. Math.137, Academic Press, Inc., Boston, MA, 1989. MR0997938
- A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, 38. Springer-Verlag, New York, 1998. MR1619036
- M.D. Donsker and Varadhan, S.R.S., Asymptotic evaluation of certain Markov process expectations for large time, I-IV, Comm. Pur. Appl. Math., 28 (1975),1--47 and 279--301; 29(1976), 389--461; 36(1983), 183-212. MR0386024
- F.Q. Gao, A Note on Cram'er's Theorem, Lecture Notes in Mathematics, 1655. S'eminaire de Probabilit'es XXXI, 77-79, Springer, 1997.
- F.Q. Gao and Q.H. Wang, Upper Bound Estimates of Cram'er Functionals for Markov Processes, Potential Analysis 19 (2003), 383--398. MR1988112
- Giles and John R., Convex analysis with application in the differentiation of convex functions, Research Notes in Mathematics, 58. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR0650456
- F.Z. Gong and F.Y. Wang, Functional inequalities for uniformly integrable semigroups and applications, Forum Math. 14 (2002), 293--313. MR1880915
- L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math.,97 (1975), no. 4, 1061--1083. MR0420249
- O. Kavian, G. Kerkyacharian and B. Roynette, Quelques remarques sur l'ultracontractivit. (French) [Some remarks about ultracontractivity] J. Funct. Anal. 111 (1993), no. 1, 155--196. MR1200640
- M. Ledoux, The concentration of measure phenomenon, 89, Mathematical Surveys and Monographs, American Mathematical Society, 2001. MR1849347
- P. Lezaud, Chernoff and Berry-Essen's inequalities for Markov processes, ESAIMS: Probability and Statistics 5(2001), 183--201. MR1875670
- M.M. Rao and Z.D. Ren, Theory of Orilicz Space, 146, Marcel Dekker, Inc. New York, 1991. MR1113700
- C. Roberto and B. Zegarli'nski, Orlicz-Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups, J. Funct. Anal. 243 (2007), no. 1, 28--66. MR2289793
- L. Saloffe-Coste, Aspects of Sobolev-Type Inequlities, London Mathmatical Society Lecture Note Series, 289, Cambridge University Press, Cambridge, 2002. MR1872526
- F.Y. Wang, Functional inequalities for empty essential spectrum, J.Funct. Anal. 170(2000), no. 1, 219--245. MR1736202
- F.Y. Wang, Functional inequalities, semigroup properties and spectrum estimates, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 3 (2000), no. 2, 263--295. MR1812701
- F.Y. Wang, Functional inequalities, Markov Semigroup and Spectral Theory, Chinese Sciences Press, Beijing/New York, 2005.
- L.M. Wu, An introduction to large deviations, in: Yan J.A., Peng S., Wu L.(Eds), Several Topics in Stochastic Analysis, Academic Press of China, Beijing, 1997, 225--336 (in Chinese).
- L.M. Wu, A deviation inequality for non-reversible Markov processes, Ann. Inst. Henri. Poincaracute{e}, Probabilitacute{e}s et Statistiques 36 (2000), no. 4, 435--445. MR1785390
- L.M. Wu, Uniformly integrable operators and large deviations for Markov processes, J. Funct. Anal. 172 (2000), no. 2, 301--376. MR1753178
- L.M. Wu, Large and moderate deviations and exponential convergence for stochastic damping Hamilton systems, Stoch. Proc. and Appl. 91 (2001), no. 2, 205--238. MR1807683

This work is licensed under a Creative Commons Attribution 3.0 License.