Download this PDF file Fullscreen Fullscreen Off
References
- R. van der Hofstad. The lace expansion approach to ballistic behaviour for one-dimensional weakly self-avoiding walk. Probab. Theory Related Fields, 119:311ñ349, (2001).MR1820689
- R. van der Hofstad, F. den Hollander, and G. Slade. A new inductive approach to the lace expansion for self-avoiding walks. Probab. Theory Related Fields, 111:253ñ286, (1998).MR1633582
- R. van der Hofstad and M. Holmes. An expansion for self-interacting random walks. Preprint, (2006).Arxiv
- R. van der Hofstad, M. Holmes, and G. Slade. Extension of the generalised inductive approach to the lace expansion: Full proof. Unpublished, (2007). Arxiv
- R. van der Hofstad and A. Sakai. Gaussian scaling for the critical spread-out contact process above the upper critical dimension. Electr. Journ. Probab., 9:710ñ769, (2004). MR2110017
- R. van der Hofstad and G. Slade. A generalised inductive approach to the lace expansion. Probab. Theory Related Fields, 122:389--430, 2002. MR1892852
- R. van der Hofstad and G. Slade. Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimensions. Ann. Inst. H. Poincar'e Probab. Statist., 39(3):413--485, 2003. MR1978987
- R. van der Hofstad and G. Slade. The lace expansion on a tree with application to networks of self-avoiding walks. Adv. Appl. Math., 30:471--528, 2003. MR1973954
- M. Holmes. Convergence of lattice trees to super-Brownian motion above the critical dimension. PhD thesis, University of British Columbia, (2005).
- M. Holmes. Convergence of lattice trees to super-Brownian motion above the critical dimension. Electr. Journ. Probab., 13: 671ñ755, (2008)
- M. Holmes and E. Perkins. Weak convergence of measure-valued processes and r-point functions. Ann. Probab., 35:1769--1782, 2007. MR2349574
- G. Slade. The Lace Expansion and its Applications. Springer, Berlin, (2006). Lecture Notes in Mathematics Vol. 1879. Ecole dÃEt'e de Probabilit'es de SaintñFlour XXXIVñ2004. MR2239599
- D. Ueltschi. A self-avoiding walk with attractive interactions. Probab. Theory Related Fields, 124:189ñ203, (2002).MR1936016

This work is licensed under a Creative Commons Attribution 3.0 License.