Download this PDF file Fullscreen Fullscreen Off
References
- J. M. P. Albin On the upper and lower classes for a stationary Gaussian stochastic process. Ann. Probab. 22(1994), 77-93. Math. Review 95e:60038
- L. Boysen, A. Kempe, A. Munk, V. Liebscher, O. Wittich. Consistencies and rates of convergence of jump penalized least squares estimators. Ann. Statist. (2007), to appear.
- H. P. Chan, T. L. Lai. Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices. Ann. Probab. 34(2006), 80-121. Math. Review 2006k:60088
- K.L. Chung, P. Erdös, T. Sirao. On the Lipschitz's condition for Brownian motion. J. Math. Soc. Japan 11(1959), 263-274. Math. Review 22:12602
- P.L. Davies, A. Kovac. Local extremes, runs, strings and multiresolution. Ann. Statist. 29(2001), 1-65. Math. Review 2002c:62067
- P. Deheuvels, L. Devroye. Limit laws of Erdös-Rényi-Shepp type. Ann. Probab. 15(1987), 1363-1386. Math. Review 88f:60055
- P. Deheuvels, L. Devroye, J. Lynch. Exact convergence rate in the limit theorems of Erdös-Rényi and Shepp. Ann. Probab. 14(1986), 209-223. Math. Review 87d:60032
- L. Dümbgen, V.G. Spokoiny. Multiscale testing of qualitative hypotheses. Ann. Statist. 29(2001), 124-152. Math. Review 2002j:62064
- Z. Kabluchko. Extreme-value analysis of standardized Gaussian increments (2007). Not published. Available at http://www.arxiv.org/abs/0706.1849
- M.R. Leadbetter, G. Lindgren, H. Rootzén. Extremes and related properties of random sequences and processes. Springer Series in Statistics (1983). New York-Heidelberg-Berlin: Springer-Verlag. Math. Review 84h:60050
- P.K. Pathak, C. Qualls. A law of iterated logarithm for stationary Gaussian processes. Trans. Amer. Math. Soc. 181(1973), 185-193. Math. Review 47:9703
- J. Pickands. An iterated logarithm law for the maximum in a stationary Gaussian sequence. Z. Wahrscheinlichkeitstheorie verw. Geb. 12(1969), 344-353. Math. Review 40:5003
- P. Révész. On the increments of Wiener and related processes. Ann. Probab. 10(1982), 613-622. Math. Review 83i:60048
- Q.-M. Shao. On a conjecture of Révész. Proc. Amer. Math. Soc. 123(1995), 575-582. Math. Review 95c:60031
- D. Siegmund, E. S. Venkatraman. Using the generalized likelihood ratio statistic for sequential detection of a change-point. Ann. Statist. 23(1995), 255-271. Math. Review 96c:62135
- D. Siegmund, B. Yakir. Tail probabilities for the null distribution of scanning statistics. Bernoulli 6(2000), 191-213. Math. Review 2001e:62036
- J. Steinebach. On a conjecture of Révész and its analogue for renewal processes, in: B. Szyszkowicz, ed. Asymptotic methods in probability and statistics. A volume in honour of Miklós Csörgö. An international conference at Carleton Univ., Canada, 1997. Amsterdam: North-Holland/Elsevier. Math. Review 2000c:60033
- C. Qualls. The law of the iterated logarithm on arbitrary sequences for stationary Gaussian processes and Brownian motion. Ann. Probab. 5(1977), 724-739. Math. Review 56:9655
- C. Qualls, H. Watanabe. An asymptotic 0-1 behavior of Gaussian processes. Ann. Math. Statist. 42(1971), 2029-2035. Math. Review 46:6437

This work is licensed under a Creative Commons Attribution 3.0 License.