Download this PDF file Fullscreen Fullscreen Off
References
- O. Angel, I. Benjamini, N. Berger and Y. Peres. Transience of percolation clusters on wedges. Elec. J. Probab. 11 (2006), 655--669. MR2242658
- P. Antal and A. Pisztora. On the chemical distance in supercritical Bernoulli percolation. Ann. Probab. 24 (1996), 1036--1048. MR1404543
- E. Babson and I. Benjamini. Cut sets and normed cohomology, with applications to percolation. Proc. Amer. Math. Soc. 127 (1999), 589--597. MR1622785
- P. Balister and B. Bollobás. Projections, entropy and sumsets. Preprint, arXiv:0711.1151v1 [math.CO]
- M. T. Barlow. Random walks on supercritical percolation clusters. Ann. of Probab. 32 (2004), 3024--3084. MR2094438
- M. T. Barlow, A. Járai, T. Kumagai and G. Slade. Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Comm. Math. Phys., to appear. arXiv:math.PR/0608164
- I. Benjamini, G. Kozma and N. Wormald. The mixing time of the giant component of a random graph. Preprint, arXiv:math.PR/0610459.
- I. Benjamini, R. Lyons and O. Schramm. Percolation perturbations in potential theory and random walks, In: Random walks and discrete potential theory (Cortona, 1997), Sympos. Math. XXXIX, M. Picardello and W. Woess (eds.), Cambridge Univ. Press, Cambridge, 1999, pp. 56--84. MR1802426 arXiv:math.PR/9804010
- I. Benjamini and E. Mossel. On the mixing time of simple random walk on the super critical percolation cluster. Probab. Theory Related Fields 125 (2003), no. 3, 408--420. MR1967022 arXiv:math.PR/0011092
- I. Benjamini, R. Pemantle and Y. Peres. Unpredictable paths and percolation. Ann. Probab. 26 (1998), 1198--1211. MR1634419
- N. Berger and M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (2007), 83--120. arXiv:math.PR/0503576
- N. Berger, M. Biskup, C. Hoffman and G. Kozma. Anomalous heat kernel decay for random walk among bounded random conductances. Ann. Inst. H. Poincaré, to appear. arXiv:math.PR/0611666
- B. Bollobás and I. Leader. Edge-isoperimetric inequalities in the grid. Combinatorica 11 (1991), 299--314. MR1137765
- D. Chen and Y. Peres, with an appendix by G. Pete. Anchored expansion, percolation and speed. Ann. Probab. 32 (2004), 2978--2995. MR2094436
- F. R. K. Chung, R. L. Graham, P. Frankl and J. B. Shearer. Some intersection theorems for ordered sets and graphs. J. Combinatorial Theory A 43 (1986), 23--37. MR0859293
- J-D. Deuschel and A. Pisztora. Surface order large deviations for high-density percolation. Probab. Th. Rel. Fields 104 (1996), no. 4, 467--482. MR1384041
- N. Fountoulakis and B. Reed. The evolution of the mixing rate. Preprint, arXiv:math.CO/0701474.
- G. Grimmett. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften, 321. Springer-Verlag, Berlin, 1999. MR1707339
- G. Grimmett, H. Kesten and Y. Zhang. Random walk on the infinite cluster of the percolation model. Probab. Th. Rel. Fields 96 (1993), 33--44. MR1222363
- G. Grimmett and J. Marstrand. The supercritical phase of percolation is well-behaved. Proc. Roy. Soc. London Ser. A 430 (1990), 439--457. MR1068308
- O. Häggström, Y. Peres and R. H. Schonmann. Percolation on transitive graphs as a coalescent process: Relentless merging followed by simultaneous uniqueness. In: Perplexing Problems in Probability (M. Bramson and R. Durrett, ed.), pages 69--90, Boston, Birkhäuser. Festschrift in honor of Harry Kesten. MR1703125
- O. Häggström and E. Mossel. Nearest-neighbor walks with low predictability profile and percolation in $2+epsilon$ dimensions. Ann. Probab. 26 (1998), 1212--1231. MR1640343
- T. S. Han. Nonnegative entropy measures of multivariate symmetric correlations. Information and Control 36 (1978), 133--156. MR0464499
- D. Heicklen and C. Hoffman. Return probabilities of a simple random walk on percolation clusters. Electron. J. Probab. 10 (2005), 250--302. MR2120245
- H. Kesten and Y. Zhang. The probability of a large finite cluster in supercritical Bernoulli percolation. Ann. Probab. 18 (1990), 537--555. MR1055419
- G. Kozma. Percolation, perimetry, planarity. Rev. Math. Iberoam. 23 (2007), no. 2, 671--676. MR2371440 arXiv:math.PR/0509235
- T. M. Liggett, R. H. Schonmann and A. M. Stacey. Domination by product measures. Ann. Probab. 25 (1997), 71--95. MR1428500
- L. H. Loomis and H. Whitney. An inequality related to the isoperimetric inequality. Bull. Amer. Math. Soc. 55 (1949), 961--962. MR0031538
- L. Lovász and R. Kannan. Faster mixing via average conductance. Proceedings of the 27th Annual ACM Symposium on theory of computing 1999.
- R. Lyons, B. Morris and O. Schramm. Ends in uniform spanning forests. Preprint, arXiv:0706.0358 [math.PR].
- R. Lyons, with Y. Peres. Probability on trees and networks . Book in preparation, present version is at http://mypage.iu.edu/~rdlyons.
- T. Lyons. A simple criterion for transience of a reversible Markov chain. Ann. Probab. 11 (1983), 393--402. MR0690136
- P. Mathieu and A. L. Piatnitski. Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007), 2287--2307. MR2345229 arXiv:math.PR/0505672
- P. Mathieu and E. Remy. Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32 (2004), 100--128. MR2040777
- B. Morris and Y. Peres. Evolving sets, mixing and heat kernel bounds. Prob. Th. Rel. Fields 133 (2005), no. 2, 245--266. MR2198701 arXiv:math.PR/0305349
- A. Nachmias and Y. Peres. Critical random graphs: diameter and mixing time. Ann. Prob., to appear. arXiv:math.PR/0701316
- G. Pete. Anchored isoperimetry, random walks, and percolation: a survey with open problems. In preparation.
- C. Rau. Sur le nombre de points visités par une marche aléatoire sur un amas infini de percolation. Preprint, arXiv:math.PR/0605056.
- L. Saloff-Coste. Lectures on finite Markov chains. In: Lectures on probability theory and statistics (Saint-Flour, 1996), pages 301--413. Lecture Notes in Math., 1665, Springer, Berlin, 1997. MR1490046
- V. Sidoravicius and A-S. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004), 219--244. MR2063376
- C. Thomassen. Isoperimetric inequalities and transient random walks on graphs. Ann. Probab. 20 (1992), 1592--1600. MR1175279
- Á. Timár. Neighboring clusters in Bernoulli percolation. Ann. Probab. 34 (2006), no. 6. 2332--2343. MR2294984
- Á. Timár. Cutsets in infinite graphs. Combin. Probab. & Comput. 16 (2007), no. 1, 159--166. MR2286517
- Á. Timár. Some short proofs for connectedness of boundaries. Preprint, http://www.math.ubc.ca/~timar.
- B. Virág. Anchored expansion and random walk. Geom. Funct. Anal. 10 (2000), no. 6, 1588--1605. MR1810755
- W. Woess. Random walks on infinite graphs and groups . Cambridge Tracts in Mathematics Vol. 138, Cambridge University Press, 2000. MR1743100

This work is licensed under a Creative Commons Attribution 3.0 License.