Download this PDF file Fullscreen Fullscreen Off
References
- Bertoin, Jean. On the local rate of growth of Lévy processes with no positive jumps. Stochastic Process. Appl. 55 (1995), no. 1, 91--100. MR1312150 (95k:60184)
- Bertoin, Jean. Lévy processes.Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0 MR1406564 (98e:60117)
- Bertoin, Jean. Subordinators: examples and applications. Lectures on probability theory and statistics (Saint-Flour, 1997), 1--91, Lecture Notes in Math., 1717, Springer, Berlin, 1999. MR1746300 (2002a:60001)
- Biggins, J. D. Random walk conditioned to stay positive. J. London Math. Soc. (2) 67 (2003), no. 1, 259--272. MR1942425 (2003m:60191)
- Bingham,N.; Goldie C.M. and Teugels J.L. Regular variation. Cambridge University Press, Cambridge, (1989). Math. Review 1015093
- Chaumont, L.; Doney, R. A. On Lévy processes conditioned to stay positive. Electron. J. Probab. 10 (2005), no. 28, 948--961 (electronic). MR2164035 (2006h:60079)
- Chaumont, Loic; Pardo, J. C. The lower envelope of positive self-similar Markov processes. Electron. J. Probab. 11 (2006), no. 49, 1321--1341 (electronic). MR2268546 (2008f:60042)
- Doney, Ronald A. Fluctuation theory for Lévy processes.Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, July 6--23, 2005.Edited and with a foreword by Jean Picard.Lecture Notes in Mathematics, 1897. Springer, Berlin, 2007. x+147 pp. ISBN: 978-3-540-48510-0; 3-540-48510-4 MR2320889 (Review)
- Fristedt, Bert E. Sample function behavior of increasing processes with stationary, independent increments. Pacific J. Math. 21 1967 21--33. MR0210190 (35 #1084)
- Fristedt, Bert E.; Pruitt, William E. Lower functions for increasing random walks and subordinators. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 18 (1971), 167--182. MR0292163 (45 #1250)
- Gīhman, Ĭ. Ī.; Skorohod, A. V. The theory of stochastic processes. II.Translated from the Russian by Samuel Kotz.Die Grundlehren der Mathematischen Wissenschaften, Band 218.Springer-Verlag, New York-Heidelberg, 1975. vii+441 pp. MR0375463 (51 #11656)
- Hambly, B. M.; Kersting, G.; Kyprianou, A. E. Law of the iterated logarithm for oscillating random walks conditioned to stay non-negative. Stochastic Process. Appl. 108 (2003), no. 2, 327--343. MR2019057 (2004m:60097)
- Monrad, Ditlev; Silverstein, Martin L. Stable processes: sample function growth at a local minimum. Z. Wahrsch. Verw. Gebiete 49 (1979), no. 2, 177--210. MR0543993 (80j:60102)
- Pardo, J. C. On the future infimum of positive self-similar Markov processes. Stochastics 78 (2006), no. 3, 123--155. MR2241913 (2008g:60113)
- J.C. Pardo. The upper envelope of positive self-similar Markov processes. To appear in J. Theoret. Probab., (2008).

This work is licensed under a Creative Commons Attribution 3.0 License.