Download this PDF file Fullscreen Fullscreen Off
References
- Abramovitch, M. and Stegun, L.A. Handbook of Mathematical Tables. National Bureau of Standards, Washington, DC, 1970.
- Bahadur, R. R.; Savage, Leonard J. The nonexistence of certain statistical procedures in nonparametric problems. Ann. Math. Statist. 27 (1956), 1115--1122. MR0084241 (18,834b)
- P.Barbe and P.Bertail. Testing the global stability of a linear model. Working Paper n?46, CREST, 2004.
- Bercu, Bernard; Gassiat, Elisabeth; Rio, Emmanuel. Concentration inequalities, large and moderate deviations for self-normalized empirical processes. Ann. Probab. 30 (2002), no. 4, 1576--1604. MR1944001 (2004a:60060)
- P.Bertail, E.Gautherat, and H.Harari-Kermadec. Exponential bounds for quasi-empirical likelihood. Working Paper n?34, CREST, 2005.
- G.P. Chistyakov and F.G?tze. Moderate deviations for Student's statistic. Theory of Probability And Its Applications, 47 (3): 415--428, 2003.
- Eaton, M.L. A probability inequality for linear combinations of bounded random variables. Annals of Statistics, 2: 609--614, 1974.
- Eaton, M. L.; Efron, Bradley. Hotelling's $T\sp{2}$ test under symmetry conditions. J. Amer. Statist. Assoc. 65 1970 702--711. MR0269021 (42 #3918)
- Efron, Bradley. Student's $t$-test under symmetry conditions. J. Amer. Statist. Assoc. 64 1969 1278--1302. MR0251826 (40 #5053)
- Giné, Evarist; Götze, Friedrich. On standard normal convergence of the multivariate Student $t$-statistic for symmetric random vectors. Electron. Comm. Probab. 9 (2004), 162--171 (electronic). MR2108862 (2006b:60034)
- Harari-Kermadec, H. Vraisemblance empirique gÃnÃralisÃe et estimation semi-paramÃtrique. PhD thesis, Università Paris X, 2006.
- Hoeffding, Wassily. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 1963 13--30. MR0144363 (26 #1908)
- B.Y. Jing and Q. Wang. An exponential nonuniform Berry-Esseen bound for self-normalized sums. Annals of Probability, 27 (4): 2068--2088, 1999.
- Major, P. A multivariate generalization of Hoeffding's inequality. Arxiv preprint math. PR/0411288, 2004.
- Owen, A.B. Empirical Likelihood. Chapman and Hall/CRC, Boca Raton, 2001.
- Panchenko, Dmitry. Symmetrization approach to concentration inequalities for empirical processes. Ann. Probab. 31 (2003), no. 4, 2068--2081. MR2016612 (2005c:60023)
- Pinelis, Iosif. Extremal probabilistic problems and Hotelling's $T\sp 2$ test under a symmetry condition. Ann. Statist. 22 (1994), no. 1, 357--368. MR1272088 (95m:62115)
- Romano, Joseph P.; Wolf, Michael. Finite sample nonparametric inference and large sample efficiency. Ann. Statist. 28 (2000), no. 3, 756--778. MR1792786 (2001i:62059)

This work is licensed under a Creative Commons Attribution 3.0 License.