Non-perturbative approach to random walk in markovian environment
Carlangelo Liverani (Universito of Rome 2)
Abstract
We prove the CLT for a random walk in a dynamical environment where the states of the environment at different sites are independent Markov chains.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 245-251
Publication Date: June 4, 2009
DOI: 10.1214/ECP.v14-1467
References
- J. Aaronson. An introduction to infinite ergodic theory. Mathematical Surveys and Monographs, 50. American Mathematical Society, Providence, RI, 1997. Math. Review 99d:28025
- A. Bandyopadhyay, O. Zeitouni. Random Walk in Dynamic Markovian Random Environment, ALEA 1 (2006) 205--224. Math. Review 2007e:60097
- C. Boldrighini, R.A. Minlos, A. Pellegrinotti. Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive. Probab. Theory Related Fields 129 (2004), no. 1, 133--156. Math. Review 2005e:60048
- C. Boldrighini, R.A. Minlos, A. Pellegrinotti. Random walks in random (fluctuating) environment. Russian Math Surveys 62(2007) 663--712. Math. Review 2358736
- E. Bolthausen, A.--S. Sznitman. On the static and dynamic points of view for certain random walks in random environment. Methods Appl. Anal. 9, 3, 345--375 (2002). Math. Review 2005c:60133
- F. Comets, O. Zeitouni. Gaussian fluctuations for random walks in random mixing environments. Israel J. Math. 148(2005), 87--113. Math. Review 2006k:60179
- D. Dolgopyat, G. Keller, C. Liverani. Random Walk in Markovian Environment. Annals of Probability 36 (2008) 1676--1710. Math. Review 2009f:60124
- D. Dolgopyat, C. Liverani. Random Walk in Deterministically Changing Environment. ALEA 4(2008) 89--116. Math. Review 2009e:82079
- G. K. Eagleson. Some simple conditions for limit theorems to be mixing. (Russian) Teor. Verojatnost. i Primenen 21(1976), no. 3, 653--660. (Engligh translation: Theor. Prob. Appl. 21 (1976) 637--642, 1977.) Math. Review 55 #1409
- W. Parry, M. Pollicott. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Asterisque 187--188 (1990) 268 pp. Math. Review 92f:58141
- F. Rassoul-Agha, T. Seppalainen. An almost sure invariance principle for random walks in a space-time i.i.d. random environment. Prob. Th., Related Fields 133 (2005) 299--314. Math. Review 2007f:60030
- A. Renyi. On mixing sequences of sets. Acta math. Acad. Sci. Hungar. 9(1958). Math. Review 20 #4623
- D. Ruelle. Statistical mechanics. Rigorous results. Reprint of the 1989 edition. World Scientific Publishing Co., Inc., River Edge, NJ; Imperial College Press, London, 1999. Math. Review 44 #6279
- W. Stannat. A remark on the CLT for a random walk in a random environment. Probability Theory and Related Fields 130,3, 377-387 (2004). Math. Review 2005f:60063
- R. Zweimuller. Mixing limit theorems for ergodic transformations. Journal of Theoretical Probability 20 (2007), 1059-1071. Math. Review 2008h:60119

This work is licensed under a Creative Commons Attribution 3.0 License.