Download this PDF file Fullscreen Fullscreen Off
References
- R.J. Adler, D. Monrad, R.H. Scissors and R.J. Wilson. Representations, decompositions, and sample function continuity of random fields with independent increments. Stoch. Proc. Appl. 15 (1983), 3-30. Math. Review MR694534
- R.M. Balan and C.A. Tudor. The stochastic heat equation with fractional-colored noise: existence of the solution. Latin Amer. J. Probab. Math. Stat. 4 (2008), 57-87. Math. Review MR2413088
- R.M. Balan and C.A. Tudor. Stochastic heat equation with multiplicative fractional-colored noise. Preprint (2008). Math. Review number not available. arXiv:0812.1913.
- R.A. Carmona and S. A. Molchanov. Parabolic Anderson problem and intermittency. Memoirs Amer. Math. Soc. 108 (1994), no. 518, viii+125 pp. Math. Review MR1185878
- R.A. Carmona and F. Viens. Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter. Stoch. Stoch. Rep. 62 (1998), 251-273. Math. Review MR1615092
- M. Cranston, T.S. Mountford and T. Shiga. Lyapunov exponent for the parabolic Anderson model with L'evy noise. Probab. Th. Rel. Fields 132 (2005), 321-355. Math. Review MR2197105
- R.C. Dalang. Extending martingale measure stochastic integral with application to spatially homogenous s.p.d.e.'s. Electr. J. Probab. 4 (1999), paper 6, 1-29. Math. Review MR1684157
- R.C. Dalang, C. Mueller and R. Tribe. A Feynman-Kac-type formula for the deterministic and stochastic wave equations and other p.d.e.'s. Trans. AMS 360 (2008), 4681-4703. Math. Review MR2403701
- T. Deck, S. Kruse, J. Potthoff and H. Watanabe. White noise approach to s.p.d.e.'s. In: Stochastic partial differential equations and applications V, (Trento, 2002). Eds. G. Da Prato and L. Tubaro. Lecture Notes in Pure and Appl. Math., 227 (2002), 183-195. Dekker, New York. Math. Review MR1919509
- R. Hersch. Random evolutions: a survey of results and problems. Rocky Mountain J. Math. 4 (1974), 443-477. Math. Review MR0394877
- Y. Hu. Heat equations with fractional white noise potentials. Appl. Math. Optim. 43 (2001), 221-243. Math. Review MR1885698
- Y. Hu and D. Nualart. Stochastic heat equation driven by fractional noise and local time. Probab. Theory Rel. Fields 143 (2009), 285-328. Math. Review MR2449130
- M.A. Kac. A stochastic model related to the telegraph's equation. Rocky Mountain J. Math. 4 (1974), 497-509. Math. Review MR0510166
- I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus, Second Edition (1991). Springer, New York. Math. Review MR1121940
- B. Oksendal, G. Vage and H.Z. Zhao. Asymptotic properties of the solutions to stochastic KPP equations. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 1363-1381. Math. Review MR1809108
- M.A. Pimsky. Lectures on Random Evolution (1991). World Scientific. Math. Review MR1143780
- S. Tindel and F. Viens. Almost sure exponential behavior for a parabolic SPDE on a manifold. Stoch. Proc. Appl. 100 (2002), 53-74. Math. Review MR1919608

This work is licensed under a Creative Commons Attribution 3.0 License.