Download this PDF file Fullscreen Fullscreen Off
References
- D. Aldous. Representations for partially exchangeable arrays of random variables. J. Multivar. Anal. 11 (1981), 581--598. Math. Review 82m:60022
- B. Bollobás, S. Janson and O. Riordan. The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31 (2007), 3--122. Math. Review 2008e:05124
- B. Bollobás, S. Janson and O. Riordan. Sparse random graphs with clustering. Preprint, 2008. Math. Review number not available.
- C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi. Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing. Preprint, 2007. Math. Review number not available.
- C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi. Convergent sequences of dense graphs II: Multiway cuts and statistical physics. Preprint, 2007. Math. Review number not available.
- C. Dellacherie and P.-A. Meyer. Probabilités et potentiel. Édition entièrement refondue, Hermann, Paris, 1975 Math. Review 58 #7757; English transl. Probabilities and Potential. North-Holland, Amsterdam, 1978. Math. Review 80b:60004
- P. Diaconis and S. Janson. Graph limits and exchangeable random graphs. Rendiconti di Matematica 28 (2008), 33--61. Math. Review 2463439
- D. Hoover. Relations on Probability Spaces and Arrays of Random Variables. Preprint, Institute for Advanced Study, Princeton, NJ, 1979. Math. Review number not available.
- O. Kallenberg. Foundations of Modern Probability. 2nd ed., Springer, New York, 2002. Math. Review 2002m:60002
- O. Kallenberg. Probabilistic Symmetries and Invariance Principles. Springer, New York, 2005. Math. Review 2006i:60002
- L. Lovász and B. Szegedy. Limits of dense graph sequences. J. Comb. Theory B 96 (2006), 933--957. Math. Review 2007m:05132

This work is licensed under a Creative Commons Attribution 3.0 License.