A note on new classes of infinitely divisible distributions on $\mathbb{R}^d$
Genta Nakahara (Keio University)
Abstract
This paper introduces and studies a family of new classes of infinitely divisible distributions on $\mathbb{R}^d$ with two parameters. Depending on parameters, these classes connect the Goldie-Steutel-Bondesson class and the class of generalized type $G$ distributions, connect the Thorin class and the class $M$, connect the class $M$ and the class of generalized type $G$ distributions. These classes are characterized by stochastic integral representations with respect to Lévy processes.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 358-371
Publication Date: August 28, 2009
DOI: 10.1214/ECP.v14-1487
References
- T. Aoyama, M. Maejima and J. Rosi'nski. A subclass of type $G$ selfdecomposable distributions. J. Theor. Prob. 21 (2008), 14-34. Math.Review MR2384471
- O.E. Barndorff-Nielsen, M. Maejima and K. Sato. Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations. Bernoulli 12 (2006), 1-33. Math.Review MR2202318
- O.E. Barndorff-Nielsen, J. Rosi'nski and S. Thorbjo rnsen. General $\Upsilon$ transformations. ALEA Lat. Am. J. Probab. MAth. Staist. 4 (2008), 131-165. Math.Review MR2421179
- W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed. (1966), John Wiley & Sons Math.Review MR0210154
- M. Maejima, M. Matsui and M. Suzuki. Classes of infinitely divisible distributions on ${\mathbb R} ^d$ related to the class of selfdecomposable distributions. To appear in Tokyo J. Math.
- K. Sato. L'evy Processes and Infinitely Divisible Distributions. Cambridge University Press. Math.Review MR1739520
- K. Sato. Stochastic integrals in additive processes and application to semi-L'evy processes. Osaka J. Math. 41 (2004), 211-236. Math.Review MR2040073
- K. Sato. Additive processes and stochastic integrals. Illinois J. Math. 50 (2006), 825-851. Math.Review MR2247848
- K. Sato. Two families of improper stochastic integrals with respect to L'evy processes. ALEA Lat. Am. J. Probab. MAth. Staist. 1 (2006), 47-87. Math.Review MR2235174

This work is licensed under a Creative Commons Attribution 3.0 License.