Download this PDF file Fullscreen Fullscreen Off
References
- Antal, Peter. Enlargement of obstacles for the simple random walk. Ann. Probab. 23 (1995), no. 3, 1061--1101. MR1349162 (96m:60158)
- Biskup, Marek; König, Wolfgang. Long-time tails in the parabolic Anderson model with bounded potential. Ann. Probab. 29 (2001), no. 2, 636--682. MR1849173 (2002j:60038)
- Carmona, René; Lacroix, Jean. Spectral theory of random Schrödinger operators. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1990. xxvi+587 pp. ISBN: 0-8176-3486-X MR1102675 (92k:47143)
- den Hollander, Frank; Weiss, George H. Aspects of Trapping in Transport Processes. In Contemporary Problems in Statistical Physics, 147--203. Society for Industrial and Applied Mathematics, 1994. Math. Review number not available.
- Donsker, M. D.; Varadhan, S. R. S. Asymptotics for the Wiener sausage. Comm. Pure Appl. Math. 28 (1975), no. 4, 525--565. MR0397901 (53 #1757a)
- Fukushima, Masatoshi. On the spectral distribution of a disordered system and the range of a random walk. Osaka J. Math. 11 (1974), 73--85. MR0353462 (50 #5945)
- Fukushima, Ryoki. Brownian survival and Lifshitz tail in perturbed lattice disorder. J. Funct. Anal. 256 (2009), no. 9, 2867--2893. MR2502426
- Fukushima, Ryoki; Ueki, Naomasa. Classical and quantum behavior of the integrated density of states for a randomly perturbed lattice. Kyoto University Preprint Series, Kyoto-Math 2009-10, submitted, 2009. Math. Review number not available.
- Havlin, Shlomo; Ben-Avraham, Daniel. Diffusion in disordered media. Adv. Phys., 36(6):695--798, 1987. Math. Review number not available.
- Kasahara, Yuji. Tauberian theorems of exponential type. J. Math. Kyoto Univ. 18 (1978), no. 2, 209--219. MR0501841 (80g:40008)
- Lifshitz, I. M. Energy spectrum structure and quantum states of disordered condensed systems. Uspehi Fiz. Nauk 83 617--663 (Russian); translated as Soviet Physics Uspekhi 7 1965 549--573. MR0181368 (31 #5597)
- Nakao, Shintaro. On the spectral distribution of the Schrödinger operator with random potential. Japan. J. Math. (N.S.) 3 (1977), no. 1, 111--139. MR0651925 (58 #31419)
- Pastur, L. A. The behavior of certain Wiener integrals as $t \rightarrow \infty$ and the density of states of Schrödinger equations with random potential. (Russian) Teoret. Mat. Fiz. 32 (1977), no. 1, 88--95. MR0449356 (56 #7661)
- Reed, Michael; Simon, Barry. Methods of modern mathematical physics. I. Functional analysis. Second edition. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. xv+400 pp. ISBN: 0-12-585050-6 MR0751959 (85e:46002)
- Romerio, M.; Wreszinski, W. On the Lifschitz singularity and the tailing in the density of states for random lattice systems. J. Statist. Phys. 21 (1979), no. 2, 169--179. MR0541078 (80h:82008)
- Seneta, Eugene. Regularly varying functions. Lecture Notes in Mathematics, Vol. 508. Springer-Verlag, Berlin-New York, 1976. v+112 pp. MR0453936 (56 #12189)
- Simon, Barry. Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447--526. MR0670130 (86b:81001a)
- Sznitman, Alain-Sol. Brownian asymptotics in a Poissonian environment. Probab. Theory Related Fields 95 (1993), no. 2, 155--174. MR1214085 (94c:60173)
- Sznitman, Alain-Sol. Brownian motion, obstacles and random media. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. xvi+353 pp. ISBN: 3-540-64554-3 MR1717054 (2001h:60147)
- van den Berg, M. A Gaussian lower bound for the Dirichlet heat kernel. Bull. London Math. Soc. 24 (1992), no. 5, 475--477. MR1173944 (93k:35116)

This work is licensed under a Creative Commons Attribution 3.0 License.