Identification of the rate function for large deviations of an irreducible Markov chain
Liming Wu (Université Blaise Pascal)
Abstract
For an irreducible Markov chain $(X_n)_{n\ge 0}$ we identify the rate function governing the large deviation estimation of empirical mean $\frac {1}{n} \sum_{k=0}^{n-1} f(X_k)$ by means of the Donsker-Varadhan's entropy. That allows us to obtain the lower bound of large deviations for the empirical measure $\frac {1}{n} \sum_{k=0}^{n-1} \delta_{X_k}$ in full generality
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 540-551
Publication Date: November 17, 2009
DOI: 10.1214/ECP.v14-1512
References
- Baxter, J.R., Jain, N.C., Varadhan, S.R.S., Some familiar examples for which the large deviation principle does not hold. Comm. Pure Appl. Math., 44 (1991), 911-923. MR1127039
- N. Bourbaki, Espaces Vectoriels Topologiques(Livre V), Chaps. III-V. Hermann, Paris, 1995.
- Bryc, W. and Smolenski, W., On the convergence of averages of mixing sequences. J. Theoret. Probab., 6 (1993), 473-483. MR1230342
- Conway, J.B., A Course in Functional Analysis. Springer, Berlin, 1985. MR0768926
- A. de Acosta, Large deviations for vector valued additive functionals of a Markov process: Lower bounds. Ann. Proba., 16 (1988), 925-960. MR0942748
- A. de Acosta and P. Ney, Large deviation lower bounds for arbitrary additive functionals of a Markov chain. Ann. Proba., 26 (1998), 1660-1682. MR1675055
- J.D. Deuschel and D.W. Stroock, Large deviations. Pure and Appl. Math. 137, Academic Press, Inc., Boston, MA, 1989. MR0997938
- M.D. Donsker and Varadhan, S.R.S., Asymptotic evaluation of certain Markov process expectations for large time, I-IV. Comm. Pur. Appl. Math., 28 (1975),1--47 and 279--301; 29 (1976), 389--461; 36 (1983), 183-212. MR0386024
- A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. 38. Springer-Verlag, New York, 1998. MR1619036
- N.C. Jain, Large deviation lower bounds for additive functionals of Markov processes. Ann. Proba., 18 (1990), 1071-1098. MR1062059
- I. Kontoyiannis and S.P. Meyn, Spectral Theory and Limit Theory for Geometrically Ergodic Markov Processes. Ann. Appl. Prob., 13 (2003), 304-362. MR1952001
- S.P. Meyn, Large Deviation Asymptotics and Control Variates for Simulating Large Functions. Ann. Appl. Probab., 16 (2006), 310-339. MR2209344
- S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability. Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 1993. MR1287609
- P. Ney and E. Nummelin, Markov additive processes (I). Eigenvalue properties and limit theorems; (II). Large deviations. Ann. Proba.,15 (1987), 561-592 and 593-609. MR0885131 and MR0885132
- E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators. Cambridge Tracts in Mathematics 83. Cambridge University Press, Cambridge, 1984. MR0776608
- Shing-Tung Yau and Richard Schoen, Lectures on Differential Geometry, in chinese. Higher Education Press in china, Beijing, 2004.
- L.M. Wu, Uniformly integrable operators and large deviations for Markov processes, J. Funct. Anal., 172 (2000), no. 2, 301--376. MR1753178
- L.M. Wu, Some notes on large deviations of Markov processes. Acta Math. Sin. (Engl. Ser.), 16 (2000), no. 3, 369-394. MR1787093
- L.M. Wu, On large deviations for moving average processes. Probability, finance and insurance, 15-49, World Sci. Publ., River Edge, NJ, 2004. MR2189197
- L.M. Wu, Essential spectral radius for Markov semigroups (I) : discrete time case. Probab. Th. Rel. Fields, 128 (2004), 255-321. MR2031227
- L.M. Wu, Large and moderate deviations and exponential convergence for stochastic damping Hamilton systems, Stoch. Proc. and Appl., 91 (2001), no. 2, 205--238. MR1807683
- K. Yosida, Functional Analysis, Third Version. Grundlehren der mathematischen Wissenschaften 123, Springer-Verlag, 1971.

This work is licensed under a Creative Commons Attribution 3.0 License.