Download this PDF file Fullscreen Fullscreen Off
References
- Bai, Z. D. (1999). Methodologies in spectral analysis of large dimensional random matrices, a review. Statistica Sinica 9, 611--677 (with discussions).
- Bai, Z. D. and Silverstein, J. (2006). Spectral Analysis of Large Dimensional Random Matrices. Science Press, Beijing.
- Basak, Anirban (2009). Large dimensional random matrices. M.Stat. Project Report, May 2009. Indian Statitstical Institute, Kolkata.
- Bhamidi, Shankar; Evans, Steven N. and Sen, Arnab (2009). Spectra of large random Trees. Available at http://front.math.ucdavis.edu/0903.3589. %
- Bhattacharya, R. N.; Ranga Rao, R. Normal approximation and asymptotic expansions.Wiley Series in Probability and Mathematical Statistics.John Wiley \& Sons, New York-London-Sydney, 1976. xiv+274 pp. MR0436272 (55 #9219)
- Bose, Arup; Gangopadhyay, Sreela and Sen, Arnab (2009). Limiting spectral distribution of $XX^{\prime}$ matrices. Annales de l'Institut Henri PoincarÃ. To appear. Currently available at http://imstat.org/aihp/accepted.html.
- Bose, Arup; Sen, Arnab. Another look at the moment method for large dimensional random matrices. Electron. J. Probab. 13 (2008), no. 21, 588--628. MR2399292 (2009d:60049)
- Bryc, WÆodzimierz; Dembo, Amir; Jiang, Tiefeng. Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34 (2006), no. 1, 1--38. MR2206341 (2007c:60039)
- Hammond, Christopher; Miller, Steven J. Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theoret. Probab. 18 (2005), no. 3, 537--566. MR2167641 (2006h:15023)

This work is licensed under a Creative Commons Attribution 3.0 License.