Download this PDF file Fullscreen Fullscreen Off
References
- Biane, P. Quantum random walk on the dual of SU(n). Probab. Theory Related Fields 89 (1991), no. 1, 117--129. Math. Review 93a:46119
- Biane, P. ?quation de Choquet-Deny sur le dual d'un groupe compact. (French) Probab. Theory Related Fields 94 (1992), no. 1, 39--51. Math. Review 94a:46091
- Biane, P. Minuscule weights and random walks on lattices. Quantum probability & related topics, 51--65, QP-PQ, VII, World Sci. Publ., River Edge, NJ, 1992. Math. Review 94c:46129
- Collins, B. Martin boundary theory of some quantum random walks. Ann. Inst. H. Poincarà Probab. Statist. 40 (2004), no. 3, 367--384. Math. Review 2005m:31021
- Doob, J. L.; Snell, J. L.; Williamson, R. E. Application of boundary theory to sums of independent random variables. 1960 Contributions to probability and statistics pp. 182--197 Stanford Univ. Press, Stanford, Calif. Math. Review MR0120667
- Dynkin, E. B. The boundary theory of Markov processes (discrete case). (Russian) Uspehi Mat. Nauk 24 1969 no. 2 (146) 3--42. Math. Review MR0245096
- Fayolle, G.; Iasnogorodski, R.; Malyshev, V. Random walks in the quarter-plane. Algebraic methods, boundary value problems and applications. Applications of Mathematics (New York), 40. Springer-Verlag, Berlin, 1999. xvi+156 pp. ISBN: 3-540-65047-4 Math. Review 2000g:60002
- Ignatiouk-Robert, I. Martin boundary of a killed random walk on Z_+^d, preprint : arXiv, 2009
- Jones G. A.; Singerman D., Complex functions, Cambridge Univ. Press, Cambridge, 1987. Math. Review 89b:30001
- Kurkova I.; Raschel, K. Random walks in Z_+^2 with non-zero drift absorbed at the axes, to appear in Bulletin de la Société Mathématique de France, preprint : arXiv, 2009
- Ney, P.; Spitzer, F. The Martin boundary for random walk. Trans. Amer. Math. Soc. 121 1966 116--132. Math. Review MR0195151
- Picardello M. A.; Woess W. Martin boundaries of Cartesian products of Markov chains, Nagoya Math. J. 128 (1992), 153â169. Math. Review 94a:60109
- Raschel, K. Random walks in the quarter plane absorbed at the boundary : exact and asymptotic, preprint : arXiv, 2009
- Spitzer, F. Principles of random walk. The University Series in Higher Mathematics D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London 1964 xi+406 pp. Math. Review MR0171290

This work is licensed under a Creative Commons Attribution 3.0 License.