Download this PDF file Fullscreen Fullscreen Off
References
- R. Adamczak. A few remarks on the operator norm of random Toeplitz matrices. J. Theoret. Probab., 23(1) 85--108, 2010. ISSN 0894-9840. 10.1007/s10959-008-0201-7. Math. Review 2591905
- Auffinger, Antonio and Ben Arous, Gerard and Peche, Sandrine. Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. Henri Poincare Probab. Stat. 45 (2009), no. 3, 589--610. Math. Review 2548495
- Z.D. Bai. Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica, 9(3):611--677, 1999. ISSN 1017-0405. Math. Review 1711663
- Z.D.Bai and Y.Q.Yin. Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab., 16(4):1729--1741, 1988. ISSN 0091-1798. Math. Review 0958213
- A.Basak and A.Bose. Limiting spectral distribution of some band matrices. To appear in Periodica Hungarica, 2010.
- P.Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999. ISBN 0-471-19745-9. 10.1002/9780470316962. A Wiley-Interscience Publication. Math. Review 1700749
- A.Bose, R.S.Hazra, and K.Saha. Spectral Norm of Circulant-Type Matrices. To appear in Journal of Theoretical Probability. 10.1007/s10959-009-0257-5.
- A.Bose, R.S.Hazra, and K.Saha. Limiting spectral distribution of circulant type matrices with dependent inputs. Electron. J. Probab., 14:no. 86, 2463--2491, 2009. ISSN 1083-6489. Math. Review 2563248
- A.Bose and J.Mitra. Limiting spectral distribution of a special circulant. Statist. Probab. Lett., 60(1):111--120, 2002. ISSN 0167--7152. 10.1016/S0167-7152(02)00289-4. Math. Review 1945684
- A.Bose and A.Sen. Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices. Electron. Comm. Probab., 12:29--35 (electronic), 2007. ISSN 1083-589X. Paging changed to 21--27 on journal site. Math. Review 2284045
- W.Bryc and S.Sethuraman. A remark on maximum eigenvalue for circulant matrices, 2009. High Dimensional Probability V: The Luminy Volume, 179--184, IMS Collections 5, Institute of Mathematical Statistics, Beachwood, OH, 2009.
- W.Bryc, A.Dembo, and T.Jiang. Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab., 34(1):1--38, 2006. ISSN 0091-1798. Math. Review 2206341
- R.A.Davis and T.Mikosch. The maximum of the periodogram of a non-Gaussian sequence. Ann. Probab., 27(1):522--536, 1999. ISSN 0091--1798. Math. Review 1681157
- J.Fan and Q.Yao. Nonlinear time series. Springer Series in Statistics. Springer-Verlag, New York, 2003. ISBN 0-387-95170-9. Nonparametric and parametric methods. Math. Review 1964455
- R.Gray. Toeplitz and circulant matrices: A review. Now Publishers, 2006.
- U.Grenander and G.Szego. Toeplitz forms and their applications. Chelsea Publishing Co., New York, second edition, 1984. ISBN 0-8284-0321-X. Math. Review 0890515
- C.Hammond and S.J.Miller. Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theoret. Probab., 18(3):537--566, 2005. ISSN 0894-9840. Math. Review 2167641
- V.Kargin. Spectrum of random Toeplitz matrices with band structure. Electron. Commun. Probab., 14:412--421, 2009. ISSN 1083-589X. Math. Review 2551851
- Z.Lin and W.Liu. On maxima of periodograms of stationary processes. Ann. Statist., 37(5B):2676--2695, 2009. ISSN 0090-5364. Math. Review 2541443
- A.Massey, S.J.Miller, and J.Sinsheimer. Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices. J. Theoret. Probab., 20(3):637--662, 2007. Math. Review 2337145
- M.Meckes. Some results on random circulant matrices. High Dimensional Probability V: The Luminy Volume, 213--223, IMS Collections 5, Institute of Mathematical Statistics, Beachwood, OH, 2009
- M.W.Meckes. On the spectral norm of a random Toeplitz matrix. Electron. Comm. Probab., 12:315--325 (electronic), 2007. ISSN 1083-589X. Math. Review 2342710
- T.Mikosch, S.Resnick, and G.Samorodnitsky. The maximum of the periodogram for a heavy-tailed sequence. Ann. Probab., 28(2):885--908, 2000. ISSN 0091-1798. Math. Review 1782277
- S.I.Resnick. Extreme values, regular variation, and point processes, volume?4 of Applied Probability. A Series of the Applied Probability Trust. Springer-Verlag, New York, 1987. ISBN 0-387-96481-9. Math. Review 0900810
- G.Samorodnitsky and M.S.Taqqu. Stable non-Gaussian random processes. Stochastic Modeling. Chapman & Hall, New York, 1994. ISBN 0-412-05171-0. Stochastic models with infinite variance. Math. Review 1280932
- J.W.Silverstein. The spectral radii and norms of large-dimensional non-central random matrices. Comm. Statist. Stochastic Models, 10(3): 525--532, 1994. ISSN 0882-0287. Math. Review 1284550
- A.Soshnikov. Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails. Electron. Comm. Probab., 9:82--91 (electronic), 2004. ISSN 1083-589X. Math. Review 2081462
- A.Soshnikov. Poisson statistics for the largest eigenvalues in random matrix ensembles. In Mathematical physics of quantum mechanics, volume 690 of Lecture Notes in Phys., pages 351--364. Springer, Berlin, 2006. Math. Review 2234922
- Y.Q.Yin, Z.D.Bai, and P.R.Krishnaiah. On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix. Probab. Theory Related Fields, 78(4): 509--521, 1988. ISSN 0178-8051. Math. Review 0950344

This work is licensed under a Creative Commons Attribution 3.0 License.