On the distribution of the Brownian motion process on its way to hitting zero
Abstract
We present functional versions of recent results on the univariate distributions of the process $V_{x,u} = x + W_{u\tau(x)},$ $0\le u\le 1$, where $W_\bullet$ is the standard Brownian motion process, $x>0$ and $\tau (x) =\inf\{t>0 :\, W_{t}=-x\}$.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 281-285
Publication Date: July 8, 2010
DOI: 10.1214/ECP.v15-1555
References
- P. Billingsley. Convergence of Probability Measures. Wiley, New York, second edition, 1999. Math. Review 1700749
- A.N. Borodin, P. Salminen. Handbook of Brownian motion - facts and formulae. Birkhäuser Verlag, Basel, second edition, 2002. Math. Review 1912205
- K. Borovkov, A.N. Downes. On boundary crossing probabilities for diffusion processes. Stoch. Proc. Appl. 120(2): 105--129, 2010. Math. Review 2576883
- R.T. Durrett, D. L. Iglehart, D.R. Miller. Weak convergence to Brownian meander and Brownian excursion. Ann. Probab. 5(1):117--129, 1977. Math. Review 0436353
- P. Chigansky, F.C. Klebaner. Distribution of the Brownian motion on its way to hitting zero. Electr. Comm. Probab. 13:641--648, 2008. MR Math. Review 2466191

This work is licensed under a Creative Commons Attribution 3.0 License.