Download this PDF file Fullscreen Fullscreen Off
References
- R. M. Balan, R. M. and S. Louhichi. Convergence of point processes with weakly dependent points. J. Theoret. Probab. 22 (2009), 955-982. Math. Review MR2558660
- Balan, R. M. and Louhichi, S. A cluster limit theorem for infinitely divisible point processes (2009). Preprint available at: http://arxiv.org/abs/0911.5471. Math Review number not available.
- Balkema, A. and Resnick, S. I. Max-infinite divisibility. J. Appl. Probab. 14 (1977), 309-319. Math. Review MR0438425
- K. Bartkiewicz, A. Jakubowski, T. Mikosch and O. Wintenberger. Stable limits for sums of dependent infinite variance random variables. To appear in Probab. Th. Rel. Fields (2009). Math Review number not available.
- J. Beirlant, Y. Goegebeur, Y, J. Segers and J. Teugels. Statistics of Extremes: Theory and Applications (2004). Wiley Series in Probability and Statistics. Math. Review MR2108013
- J. Dedecker and S. Louhichi. Conditional convergence to infinitely divisible distributions with finite variance. Stoch. Proc. Appl. 115 (2005), 737-768. Math. Review MR2132596
- J. Dedecker and S. Louhichi. Convergence to infinitely divisible distributions with finite variance. ESAIM Probab. Stat. 9 (2005), 38-73. Math. Review MR2148960
- R. A. Davis and T. Hsing. Point process and partial sum convergence for weakly dependent random variables with infinite variance. Ann. Probab. 23 (1995), 879-917. Math. Review MR1334176
- R. Durrett and S. I. Resnick. Functional limit theorems for dependent variables. Ann. Probab. 6 (1978), 829-846. Math. Review MR0503954
- B. V. Gnedenko and A. N. Kolmogorov.Limit Distributions for Sums of Independent Random Variables (1954). Addison-Wesley, MA. Math. Review MR0062975
- T. Hsing, J. Husler and M. R. Leadbetter. On the exceedance process for a stationary sequence. Probab. Th. Rel. Fields 78 (1988), 97-112. Math. Review MR0940870
- A. Jakubowski. Minimal conditions in p-stable limit theorems. Stoch. Proc. Appl. 44 (1993), 291-327. Math. Review MR1200412
- A. Jakubowski. Minimal conditions in $p$-stable limit theorems. Stoch. Proc. Appl. 68 (1997), 1-20. Math. Review MR1454576
- A. Jakubowski and M. Kobus. alpha-stable limit theorems for sums of dependent random vectors. J. Multiv. Anal. 29 (1989), 219-251. Math. Review MR1004336
- O. Kallenberg. Random Measures. Third edition (1983). Springer, New York. Math. Review MR0818219
- M. R. Leadbetter. Extremes and local dependence in stationary sequences. Z. Wahr. verw. Gebiete 65 (1983), 291-306. Math. Review MR0722133
- G. F. Newell. Asymptotic extremes for m-dependent random variables. Ann. Math. Stat. 35 (1964),1322-1325. Math. Review MR0164361
- G. L. O'Brien. The maximal term of uniformly mixing stationary processes. Z. Wahr. verw. Gebiete 30 (1974), 57-63. Math. Review MR0362451
- G. L. O'Brien. Extreme values for stationary and Markov sequences. Ann. Probab. 15 (1987), 281-291. Math. Review MR0877604
- S. I. Resnick. Weak convergence to extremal processes. Ann. Probab. 3 (1975), 951-960. Math. Review MR0428396
- S. I. Resnick. Extreme Values, Regular Variation, and Point Processes (1987). Springer, New York. Math. Review MR0900810
- S. I. Resnick. Heavy Tail Phenomena: Probabilistic and Statistical Modelling (2007). Springer, New York. Math. Review MR2271424
- S. I. Resnick and P. Greenwood. A bivariate stable characterization and domains of attraction. J. Multiv. Anal. 9 (1979), 206-221. Math. Review MR0538402
- J. Segers. Approximate Distributions of Clusters of Extremes. Statist. Probab. Lett. 74 (2005), 330-336. Math. Review MR2186477
- J. Segers. Rare events, temporal dependence, and the extremal index. J. Appl. Probab. 43 (2006), 463-485. Math. Review MR2248577
- R. L. Smith. The extremal index for a Markov chain. J. Appl. Probab. 29 (1992), 37-45. Math. Review MR1147765
- I. Weissman. On weak convergence of extremal processes. Ann. Probab. 4 (1976), 470-473. Math. Review MR0400330

This work is licensed under a Creative Commons Attribution 3.0 License.