Download this PDF file Fullscreen Fullscreen Off
References
- A. Araujo, E. GinÃ. The central limit theorem for real and Banach valued random variables. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York-Chichester-Brisbane (1980). Math. Review 83e:60003
- A. Chakrabarty, G. Samorodnitsky. Understanding heavy tails in a bounded world or, is a truncated hevy tail heavy or not? Preprint available at arXiv:1001.3218
- A. de Acosta, E. GinÃ. Convergence of moments and related functionals in the general central limit theorem in Banach spaces. Z. Wahrsch. Verw. Gebiete 48 (1979), 213-231. Math. Review 80h:60011
- L. de Haan, A. Ferreira. Extreme value theory. An introduction. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). Math. Review 2007g:62008
- W. Feller. An introduction to probability theory and its applications. Vol. II. Second edition John Wiley & Sons, Inc., New York-London-Sydney (1971). Math. Reviw 42 #5292
- M. Ledoux, M. Talagrand. Probability in Banach spaces. Isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 23 (1991). Springer-Verlag, Berlin. Math. Review 93c:60001
- G. Samorodnitsky, M.S. Taqqu. Stable non-Gaussian random processes. Stochastic models with infinite variance. Stochastic Modeling. Chapman & Hall, New York (1994). Math. Review 95f:60024

This work is licensed under a Creative Commons Attribution 3.0 License.