Central limit theorem for the third moment in space of the Brownian local time increments
David Nualart (University of Kansas)
Abstract
The purpose of this note is to prove a central limit theorem for the third integrated moment of the Brownian local time increments using techniques of stochastic analysis. The main ingredients of the proof are an asymptotic version of Knight's theorem and the Clark-Ocone formula for the third integrated moment of the Brownian local time increments.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 396-410
Publication Date: September 14, 2010
DOI: 10.1214/ECP.v15-1573
References
- Barlow, M. T.; Yor, M. Semimartingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times. J. Funct. Anal. 49 (1982), no. 2, 198--229. Math. Review 84f:60073
- Borodin, A. N. Brownian local time. Russian Math. Surveys 44(1989), 1--51. Math. Review 90f:60138
- Chen, X., Li, W., Marcus, M. B. and Rosen, J: A CLT for the $% L^{2}$ modulus of continiuty of Brownian local time. Ann. Prob. 38(2010), 396--438.
- Hu, Y.; Nualart, D. Stochastic integral representation of the $L^{2}$ modulus of Brownian local time and a central limit theorem. Electron. Commun. Probab. 14(2009), 529--539. Math. Review MR2564487
- Nualart, D. The Malliavin Calculus and Related Topics. Second edition. Springer Verlag, Berlin, 2006. Math. Review 2006j:60004
- Ocone, D. Malliavin calculus and stochastic integral representation of diffusion processes. Stochastics 14(1984), 161--185. Math. Review 86c:93107
- Perkins, E. Local time is a semimartingale. Z. Wahrsch. Verw. Gebiete 60 (1982), 79--117. Math. Review 84e:60117
- Pitman, J.; Yor, M. Asymptotic laws of planar Brownian motion. Ann. Prob. 14(1986), no. 3, 733--779. Math. Review 88a:60145
- Revuz, D.; Yor, M. Continuous martingales and Brownian motion. Third edition. Springer-Verlag, Berlin, 1999. Math. Review 2000h:60050
- Rogers, L. C. G.; Walsh, J. B. The exact $4/3$-variation of a process arising from Brownian motion. Stochastics Stochastics Rep. 51 (1994), no. 3-4, 267--291. Math. Review 97a:60101
- Rosen, L. Derivatives of self-intersection local times. To appear in SÃminaire de ProbabilitÃs.
- Rosen, J. A CLT for the third integrated moment of Brownian local time. To appear in Stochastics and Dynamics.

This work is licensed under a Creative Commons Attribution 3.0 License.