Download this PDF file Fullscreen Fullscreen Off
References
- Barlow, M. T.; Yor, M. Semimartingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times. J. Funct. Anal. 49 (1982), no. 2, 198--229. Math. Review 84f:60073
- Borodin, A. N. Brownian local time. Russian Math. Surveys 44(1989), 1--51. Math. Review 90f:60138
- Chen, X., Li, W., Marcus, M. B. and Rosen, J: A CLT for the $% L^{2}$ modulus of continiuty of Brownian local time. Ann. Prob. 38(2010), 396--438.
- Hu, Y.; Nualart, D. Stochastic integral representation of the $L^{2}$ modulus of Brownian local time and a central limit theorem. Electron. Commun. Probab. 14(2009), 529--539. Math. Review MR2564487
- Nualart, D. The Malliavin Calculus and Related Topics. Second edition. Springer Verlag, Berlin, 2006. Math. Review 2006j:60004
- Ocone, D. Malliavin calculus and stochastic integral representation of diffusion processes. Stochastics 14(1984), 161--185. Math. Review 86c:93107
- Perkins, E. Local time is a semimartingale. Z. Wahrsch. Verw. Gebiete 60 (1982), 79--117. Math. Review 84e:60117
- Pitman, J.; Yor, M. Asymptotic laws of planar Brownian motion. Ann. Prob. 14(1986), no. 3, 733--779. Math. Review 88a:60145
- Revuz, D.; Yor, M. Continuous martingales and Brownian motion. Third edition. Springer-Verlag, Berlin, 1999. Math. Review 2000h:60050
- Rogers, L. C. G.; Walsh, J. B. The exact $4/3$-variation of a process arising from Brownian motion. Stochastics Stochastics Rep. 51 (1994), no. 3-4, 267--291. Math. Review 97a:60101
- Rosen, L. Derivatives of self-intersection local times. To appear in SÃminaire de ProbabilitÃs.
- Rosen, J. A CLT for the third integrated moment of Brownian local time. To appear in Stochastics and Dynamics.

This work is licensed under a Creative Commons Attribution 3.0 License.