Download this PDF file Fullscreen Fullscreen Off
References
- Baudoin, Fabrice; Coutin, Laure. Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic Process. Appl. 117 (2007), no. 5, 550--574. MR2320949 (2008c:60050)
- Friz, Peter K.; Victoir, Nicolas B. Multidimensional stochastic processes as rough paths.Theory and applications.Cambridge Studies in Advanced Mathematics, 120. Cambridge University Press, Cambridge, 2010. xiv+656 pp. ISBN: 978-0-521-87607-0 MR2604669
- Gubinelli, M. Controlling rough paths. J. Funct. Anal. 216 (2004), no. 1, 86--140. MR2091358 (2005k:60169)
- A. Lejay. Global solutions to rough differential equations with unbounded vector fields. Preprint hal available on: http://hal.archives-ouvertes.fr/inria-00451193.
- A. Neuenkirch, I. Nourdin, A. Rössler, S. Tindel. Trees and asymptotic developments for fractional stochastic differential equations. Preprint arXiv:math.PR/0611306.
- S. Tindel, J. Unterberger. The rough path associated to the multidimensional analytic fBm with any Hurst parameter. Preprint arXiv:0810.1408. To appear in: Collectanea Mathematica.
- Unterberger, Jérémie. Stochastic calculus for fractional Brownian motion with Hurst exponent $H>frac 14$: a rough path method by analytic extension. Ann. Probab. 37 (2009), no. 2, 565--614. MR2510017 (2010i:60089)
- J. Unterberger. A stochastic calculus for multidimensional fractional Brownian motion with arbitrary Hurst index, Stoch. Proc. Appl. 120 (8), 1444-1472 (2010).
- J. Unterberger. Hölder-continuous rough paths by Fourier normal ordering, Comm. Math. Phys. 298 (1), 1--36 (2010).

This work is licensed under a Creative Commons Attribution 3.0 License.