Download this PDF file Fullscreen Fullscreen Off
References
-
R. Bañuelos, P. Janakiraman,
Lp-bounds for the Beurling-Ahlfors transform,
Trans. Amer. Math. Soc.
360 (2008), 3603-3612.
Math. Review 2009d:42032
- R. Bañuelos, G. Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transformations, Duke Math. J. 80 (1995), 575-600. Math. Review 96k:60108
- D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), 647-702. Math. Review 86b:60080
- D. L. Burkholder, Explorations in martingale theory and its applications, Ecole d'Été de Probabilités de Saint Flour XIX-1989, Lecture Notes in Mathematics 1464 (1991), 1-66 . Math. Review 92m:60037
- D. L. Burkholder, Strong differential subordination and stochastic integration, Ann. Probab. 22 (1994), 995-1025. Math. Review 95h:60085
- C. Choi, A weak-type submartingale inequality, Kobe J. Math. 14 (1997), 109-121. Math. Review 99f:60088
- C. Choi, A norm inequality for Itô processes, J. Math. Kyoto Univ. 37 (1997), 229-240. Math. Review 99b:60061
- C. Choi, A sharp bound for Itô processes, J. Korean Math. Soc. 35 (1998), 713-725. Math. Review 2000f:60085
- K. P. Choi, Some sharp inequalities for martingale transforms, Trans. Amer. Math. Soc. 307 (1988), 279-300. Math. Review 89b:60132
- S. Geiss, S. Montgomery-Smith, E. Saksman, On singular integral and martingale transforms, Trans. Amer. Math. Soc. 362 (2010), 553-575. Math. Review number not available.
- W. Hammack, Sharp maximal inequalities for stochastic integrals in which the integrator is a submartingale, Proc. Amer. Math. Soc. 124 (1996), 931-938. Math. Review 96f:60075
- A. Osekowski, Weak type inequality for noncommutative differentially subordinated martingales, Probability Theory Related Fields 140 (2008), 553 - 568. Math. Review 2008m:46135
- A. Osekowski, Sharp LlogL inequalities for differentially subordinated martingales, Illinois J. Math. , 52 (2009), 745-756. Math. Review number not available.
- A. Osekowski, Sharp weak type inequalities for differentially subordinated martingales, Bernoulli 15 (2009), 871-897. Math. Review number not available.
- Y. Suh, A sharp weak type (p,p) inequality (p>2) for martingale transforms and other subordinate martingales, Trans. Amer. Math. Soc. 357 (2005), 1545-1564. Math. Review 2005k:60134
- G. Wang, Differential subordination and strong differential subordination for continuous time martingales and related sharp inequalities, Ann. Probab. 23 (1995), 522-551. Math. Review 96b:60120

This work is licensed under a Creative Commons Attribution 3.0 License.