Download this PDF file Fullscreen Fullscreen Off
References
- A-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science 286 (1999), 509-512. Math. Review 2091634
- M. Drmota. Increasing tree families. Complex Networks and Random Graphs, 2005. Math. Review number not available.
- M. Drmota. Random trees. Springer-Verlag/Wien (2009). Math. Review 2484382
- W. Feller. An introduction to probability theory and its applications, Vol. 2. Wiley, New York (1971). Math. Review 0270403
- R. Gouet. A martingale approach to strong convergence in a generalized Polya-Eggenbegger urn model. Statist. Probab. Lett. 8 (1989), 225-228. Math. Review 1024032
- R. Gouet. Martingale functional central limit theorems for a generalized Polya urn. Ann. Probab. 21 (1993), 1624-1639. Math. Review 1235432
- N. L. Johnson and S. Kotz. Urn models and their application. John Wiley & Sons, New York (1977). Math. Review 0488211
- H. M. Mahmoud. Polya urn models. Chapman & Hall/CRC (2009). Math. Review 2435823
- T. F. Mori. Random multitrees. Studia Sci.Math.Hungar. 47 (2010), 59-80. Math. Review 2654228
- T. F. Mori. The maximum degree of the Barabasi-Albert random tree. Combinatorics, Probability and Computing 14 (2005), 339-348. Math. Review 2138118
- A. Rudas, B. Toth and B. Valko. Random trees and general branching processes. Random Structures Algorithms 31 (2007), 186-202. Math. Review 2343718

This work is licensed under a Creative Commons Attribution 3.0 License.