The growth constants of lattice trees and lattice animals in high dimensions
Gordon Slade (University of British Columbia)
Abstract
We prove that the growth constants for nearest-neighbour lattice trees and lattice (bond) animals on the integer lattice $\mathbb{Z}^d$ are asymptotic to $2de$ as the dimension goes to infinity, and that their critical one-point functions converge to $e$. Similar results are obtained in dimensions $d > 8$ in the limit of increasingly spread-out models; in this case the result for the growth constant is a special case of previous results of M. Penrose. The proof is elementary, once we apply previous results of T. Hara and G. Slade obtained using the lace expansion.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 129-136
Publication Date: February 25, 2011
DOI: 10.1214/ECP.v16-1612
References
- C. Borgs, J. Chayes, R. van der Hofstad and G. Slade. Mean-field lattice trees. On combinatorics and statistical mechanics. Ann. Combinatorics 3 (1999), 205--221. Math. Review 1772346
- N. Clisby, R. Liang and G. Slade. Self-avoiding walk enumeration via the lace expansion. J. Phys. A: Math. Theor. 40 (2007), 10973--11017. Math. Review 2396212
- E. Derbez and G. Slade. The scaling limit of lattice trees in high dimensions. Commun. Math. Phys. 193 (1998), 69--104. Math. Review 1620301
- D.S. Gaunt and P.J. Peard. 1/d-expansions for the free energy of weakly embedded site animal models of branched polymers. J. Phys. A 33 (2000), 7515--7539. Math. Review 1802107
- B.T. Graham. Borel-type bounds for the self-avoiding walk connective constant. J. Phys. A: Math. Theor. 43 (2010), 235001. Math. Review 2646672
- T. Hara. Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36 (2008), 530--593. Math. Review 2393990
- T. Hara and G. Slade. On the upper critical dimension of lattice trees and lattice animals. J. Statist. Phys. 59 (1990), 1469--1510. Math. Review 1063208
- T. Hara and G. Slade. The self-avoiding-walk and percolation critical points in high dimensions. Combin. Probab. Comput. 4 (1995), 197--215. Math. Review 1356575
- A.B. Harris. Renormalized (1/σ) expansion for lattice animals and localization. Phys. Rev. B 26 (1982), 337--366. Math. Review 0668821
- R. van der Hofstad and A. Sakai. Critical points for spread-out self-avoiding walk, percolation and the contact process above the upper critical dimensions. Probab. Theory Related Fields 132 (2005), 438--470. Math. Review 2197108
- R. van der Hofstad and G. Slade. Expansion in n-1 for percolation critical values on the n-cube and Zn: the first three terms. Combin. Probab. Comput. 15 (2006), 695--713. Math. Review 2248322
- M. Holmes. Convergence of lattice trees to super-Brownian motion above the critical dimension. Electr. J. Probab. 13 (2008), 671--755. Math. Review 2399294
- E.J. Janse van Rensburg. The statistical mechanics of interacting walks, polygons, animals and vesicles. (2000) Oxford University Press, Oxford. Math. Review 1858028
- D.A. Klarner. Cell growth problems. Canad. J. Math. 19 (1967), 851--863. Math. Review 0214489
- D.J. Klein. Rigorous results for branched polymer models with excluded volume. J. Chem. Phys. 75 (1981), 5186--5189.
- P.J. Peard and D.S. Gaunt. 1/d-expansions for the free energy of lattice animal models of a self-interacting branched polymer. J. Phys. A: Math. Gen. 28 (1995), 6109--6124. Math. Review 1364786
- M.D. Penrose. On the spread-out limit for bond and continuum percolation. Ann. Appl. Probab. 3 (1993), 253--276. Math. Review 1202526
- M.D. Penrose. Self-avoiding walks and trees in spread-out lattices. J. Stat. Phys. 77 (1994), 3--15.Math. Review 1300525
- G. Slade. The lace expansion and its applications. Lectures from the 34th Summer School on Probability Theory, Saint-Flour. Lecture Notes in Mathematics 1879 (2006) Springer, Berlin. Math. Review 2239599
- R.P. Stanley. Enumerative combinatorics. Vol. 1 (1997). Cambridge University Press, Cambridge. Math. Review 1442260

This work is licensed under a Creative Commons Attribution 3.0 License.