Download this PDF file Fullscreen Fullscreen Off
References
- Ahlswede, Rudolf; Winter, Andreas. Strong converse for identification via quantum channels. IEEE Trans. Inform. Theory 48 (2002), no. 3, 569--579. MR1889969 (2003d:94069)
- Bhatia, Rajendra. Matrix analysis. Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997. xii+347 pp. ISBN: 0-387-94846-5 MR1477662 (98i:15003)
- Freedman, David A. On tail probabilities for martingales. Ann. Probability 3 (1975), 100--118. MR0380971 (52 #1868)
- Lieb, Elliott H. Convex trace functions and the Wigner-Yanase-Dyson conjecture. Advances in Math. 11 (1973), 267--288. MR0332080 (48 #10407)
- Lugosi, Gabor. Concentration-of-measure inequalities, 2009. Available electronically.
- Oliveira, Roberto I. Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges, Feb. 2010. Available at arXiv:0911.0600.
- Petz, Dénes. A survey of certain trace inequalities. Functional analysis and operator theory (Warsaw, 1992), 287--298, Banach Center Publ., 30, Polish Acad. Sci., Warsaw, 1994. MR1285615 (95c:15038)
- Tropp, Joel A. From the joint convexity of quantum relative entropy to a concavity theorem of Lieb. Accepted to Proc. AMS, Mar. 2011. Available at arXiv:1101.1070.
- Tropp, Joel A. User-friendly tail bounds for sums of random matrices, Apr. 2010. Available at arXiv:1004.4389.
- Tropp, Joel A. User-friendly tail bounds for matrix martingales. ACM Report 2011-01, California Inst. Tech., Pasadena, CA, Jan. 2011.

This work is licensed under a Creative Commons Attribution 3.0 License.