Quantization Balls and Asymptotics of Quantization Radii for Probability Distributions with Radial Exponential Tails
Abstract
In this paper, we provide the sharp asymptotics for the quantization radius (maximal radius) for a sequence of optimal quantizers for random variables $X$ in $(\mathbb{R}^d,\|\,\cdot\,\|)$ with radial exponential tails. This result sharpens and generalizes the results developed for the quantization radius in [4] for $d > 1$, where the weak asymptotics is established for similar distributions in the Euclidean case. Furthermore, we introduce quantization balls, which provide a more general way to describe the asymptotic geometric structure of optimal codebooks, and extend the terminology of the quantization radius.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 283-295
Publication Date: June 6, 2011
DOI: 10.1214/ECP.v16-1629
References
- Graf, Siegfried; Luschgy, Harald. Foundations of quantization for probability distributions. Lecture Notes in Mathematics, 1730. Springer-Verlag, Berlin, 2000. x+230 pp. ISBN: 3-540-67394-6 MR1764176 (2001m:60043)
- Graf, Siegfried; Luschgy, Harald; Pagès, Gilles. Distortion mismatch in the quantization of probability measures. ESAIM Probab. Stat. 12 (2008), 127--153. MR2374635 (2009b:60126)
- Pagès, Gilles. A space quantization method for numerical integration. J. Comput. Appl. Math. 89 (1998), no. 1, 1--38. MR1625987 (99d:65074)
- Pagès, Gilles; Sagna, Abass. Asymptotics of the maximal radius of an Lr-optimal sequence of quantizers. http://www.citebase.org/abstract?id=oai:arXiv.org:0806.0918, 2008. Math. Review number not available.

This work is licensed under a Creative Commons Attribution 3.0 License.