Random laminations and multitype branching processes
Yuval Peres (Microsoft Research Redmond)
Abstract
We consider multitype branching processes arising in the study of random laminations of the disk. We classify these processes according to their subcritical or supercritical behavior and provide Kolmogorov-type estimates in the critical case corresponding to the random recursive lamination process of [1]. The proofs use the infinite dimensional Perron-Frobenius theory and quasi-stationary distributions.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 435-446
Publication Date: August 19, 2011
DOI: 10.1214/ECP.v16-1641
References
- N. Curien and J.-F. Le Gall. Random recursive triangulations of the disk via fragmentation theory. Annals of Probab. (to appear) Math. Review number not available.
- A.N. Kolmogorov. Zur lsung einer biologischen aufgabe [german: On the solution of a problem in biology]. Izv. NII Matem. Mekh. Tomskogo Univ., 2:7--12, 1938. Math. Review number not available.
- E. Seneta and D. Vere-Jones. On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states. J. Appl. Probability, 3:403--434, 1966. 0207047

This work is licensed under a Creative Commons Attribution 3.0 License.