Yet another proof of the Nualart-Peccati criterion
Abstract
In 2005, Nualart and Peccati showed that, surprisingly, the convergence in distribution of a normalized sequence of multiple Wiener-Itô integrals towards a standard Gaussian law is equivalent to convergence of just the fourth moment to 3. Recently, this result is extended to a sequence of multiple Wigner integrals, in the context of free Brownian motion. The goal of the present paper is to offer an elementary, unifying proof of these two results. The only advanced, needed tool is the product formula for multiple integrals. Apart from this formula, the rest of the proof only relies on soft combinatorial arguments.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 467-481
Publication Date: August 28, 2011
DOI: 10.1214/ECP.v16-1642
References
- P. Biane and R. Speicher. Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probab. Theory Rel. Fields 112 (1998), 373-409. Math. Review 99i:60108
- A. Deya and I. Nourdin. Convergence of Wigner integrals to the tetilla law. Submitted.
- T. Kemp, I. Nourdin, G. Peccati and R. Speicher. Wigner chaos and the fourth moment. Ann. Probab., to appear. Math. Review number not available.
- A. Nica and R. Speicher. Lectures on the Combinatorics of Free Probability. Lecture Notes of the London Mathematical Society 335 (2006). Cambridge University Press. Math. Review 2008k:46198
- S. Noreddine and I. Nourdin. On the Gaussian approximation of vector-valued multiple integrals. J. Multiv. Anal. rm {bf 102} (2011), no. 6, 1008-1017. Math. Review number not available.
- I. Nourdin and G. Peccati. Non-central convergence of multiple integrals. Ann. Probab. 37 (2009), no. 4, 1412-1426. Math. Review 2010i:60086
- I. Nourdin and G. Peccati. Stein's method on Wiener chaos. Probab. Theory Rel. Fields 145 (2009), no. 1, 75-118. Math. Review 2010i:60087
- I. Nourdin and G. Peccati. Stein's method meets Malliavin calculus: a short survey with new estimates. In the volume: Recent Development in Stochastic Dynamics and Stochastic Analysis (2010). World Scientific, 207-236. Math. Review number not available.
- I. Nourdin and G. Peccati. Cumulants on the Wiener space. J. Funct. Anal. 258 (2010), 3775-3791. Math. Review 2011h:60081
- I. Nourdin and G. Peccati. Poisson approximations on the free Wigner chaos. Submitted.
- I. Nourdin, G. Peccati and G. Reinert. Invariance principles for homogeneous sums: universality of Gaussian Wiener chaos. Ann. Probab. 38 (2010), no. 5, 1947-1985. Math. Review 2011g:60043
- D. Nualart. The Malliavin calculus and related topics (2006). Springer Verlag, Berlin, Second edition. Math. Review 2006j:60004
- D. Nualart and S. Ortiz-Latorre. Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Proc. Appl. 118 (2008), no. 4, 614-628. Math. Review 2009h:60053
- D. Nualart and G. Peccati. Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (2005), no. 1, 177-193. Math. Review 2005k:60077

This work is licensed under a Creative Commons Attribution 3.0 License.