Download this PDF file Fullscreen Fullscreen Off
References
- P. Biane and R. Speicher. Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probab. Theory Rel. Fields 112 (1998), 373-409. Math. Review 99i:60108
- A. Deya and I. Nourdin. Convergence of Wigner integrals to the tetilla law. Submitted.
- T. Kemp, I. Nourdin, G. Peccati and R. Speicher. Wigner chaos and the fourth moment. Ann. Probab., to appear. Math. Review number not available.
- A. Nica and R. Speicher. Lectures on the Combinatorics of Free Probability. Lecture Notes of the London Mathematical Society 335 (2006). Cambridge University Press. Math. Review 2008k:46198
- S. Noreddine and I. Nourdin. On the Gaussian approximation of vector-valued multiple integrals. J. Multiv. Anal. rm {bf 102} (2011), no. 6, 1008-1017. Math. Review number not available.
- I. Nourdin and G. Peccati. Non-central convergence of multiple integrals. Ann. Probab. 37 (2009), no. 4, 1412-1426. Math. Review 2010i:60086
- I. Nourdin and G. Peccati. Stein's method on Wiener chaos. Probab. Theory Rel. Fields 145 (2009), no. 1, 75-118. Math. Review 2010i:60087
- I. Nourdin and G. Peccati. Stein's method meets Malliavin calculus: a short survey with new estimates. In the volume: Recent Development in Stochastic Dynamics and Stochastic Analysis (2010). World Scientific, 207-236. Math. Review number not available.
- I. Nourdin and G. Peccati. Cumulants on the Wiener space. J. Funct. Anal. 258 (2010), 3775-3791. Math. Review 2011h:60081
- I. Nourdin and G. Peccati. Poisson approximations on the free Wigner chaos. Submitted.
- I. Nourdin, G. Peccati and G. Reinert. Invariance principles for homogeneous sums: universality of Gaussian Wiener chaos. Ann. Probab. 38 (2010), no. 5, 1947-1985. Math. Review 2011g:60043
- D. Nualart. The Malliavin calculus and related topics (2006). Springer Verlag, Berlin, Second edition. Math. Review 2006j:60004
- D. Nualart and S. Ortiz-Latorre. Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Proc. Appl. 118 (2008), no. 4, 614-628. Math. Review 2009h:60053
- D. Nualart and G. Peccati. Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (2005), no. 1, 177-193. Math. Review 2005k:60077

This work is licensed under a Creative Commons Attribution 3.0 License.