The tail of the maximum of Brownian motion minus a parabola
Nico M. Temme (CWI)
Abstract
We analyze the tail behavior of the maximum $N$ of $\{W(t)-t^2:t\ge0\}$, where $W$ is standard Brownian motion on $[0,\infty)$, and give an asymptotic expansion for ${\mathbb P}\{N\ge x\}$, as $x\to\infty$. This extends a first order result on the tail behavior, which can be deduced from Hüsler and Piterbarg (1999). We also point out the relation between certain results in Janson et al. (2010) and Groeneboom (2010).
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 458-466
Publication Date: August 24, 2011
DOI: 10.1214/ECP.v16-1645
References
- Drazin, P. G.; Reid, William Hill. Hydrodynamic stability.Cambridge Monographs on Mechanics and Applied Mathematics.Cambridge University Press, Cambridge-New York, 1981. xiv+525 pp. ISBN: 0-521-22798-4 MR0604359 (82h:76021)
- Groeneboom, Piet. Brownian motion with a parabolic drift and Airy functions. Probab. Theory Related Fields 81 (1989), no. 1, 79--109. MR0981568 (90c:60052)
- Groeneboom, Piet. The maximum of Brownian motion minus a parabola. Electron. J. Probab. 15 (2010), no. 62, 1930--1937. MR2738343 (Review)
- P. Groeneboom and G. Jongbloed, Testing monotonicity of a hazard: asymptotic distribution theory. Submitted, 2010.
- Hüsler, J.; Piterbarg, V. Extremes of a certain class of Gaussian processes. Stochastic Process. Appl. 83 (1999), no. 2, 257--271. MR1708208 (2000h:60057)
- Janson, Svante; Louchard, Guy; Martin-Löf, Anders. The maximum of Brownian motion with parabolic drift. Electron. J. Probab. 15 (2010), no. 61, 1893--1929. MR2738342
- S. Janson and P. Chassaing, The center of mass of the ISE and the Wiener index of trees, Electron. Comm. Probab. 9 (2004), 178--187
- Olde Daalhuis, A. B. Hypergeometric function. NIST handbook of mathematical functions, 383--401, U.S. Dept. Commerce, Washington, DC, 2010. MR2655355
- Olver, F. W. J. Airy and related functions. NIST handbook of mathematical functions, 193--213, U.S. Dept. Commerce, Washington, DC, 2010. MR2655349
- F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC, 2010, With 1 CD-ROM (Windows, Macintosh and UNIX).

This work is licensed under a Creative Commons Attribution 3.0 License.