Download this PDF file Fullscreen Fullscreen Off
References
- Çağlar, M. A long-range dependent workload model for packet data traffic. Math. Oper. Res. 29 (2004), no. 1, 92--105. MR2065716
- Cioczek-Georges, R.; Mandelbrot, B. B. Alternative micropulses and fractional Brownian motion. Stochastic Process. Appl. 64 (1996), no. 2, 143--152. MR1424232
- Garzón, J.; Gorostiza, L. G.; León, J. A. A strong uniform approximation of fractional Brownian motion by means of transport processes. Stochastic Process. Appl. 119 (2009), no. 10, 3435--3452. MR2568281
- Kallenberg, Olav. Foundations of modern probability. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2 MR1876169
- Mandelbrot, Benoit B.; Van Ness, John W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 1968 422--437. MR0242239
- Medina, Juan Miguel; Cernuschi-Frías, Bruno. A synthesis of a $1/f$ process via Sobolev spaces and fractional integration. IEEE Trans. Inform. Theory 51 (2005), no. 12, 4278--4285. MR2243158
- Peligrad, Magda; Sethuraman, Sunder. On fractional Brownian motion limits in one dimensional nearest-neighbor symmetric simple exclusion. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008), 245--255. MR2448774
- Pipiras, Vladas; Taqqu, Murad S. Integration questions related to fractional Brownian motion. Probab. Theory Related Fields 118 (2000), no. 2, 251--291. MR1790083
- Sottinen, Tommi. Fractional Brownian motion, random walks and binary market models. Finance Stoch. 5 (2001), no. 3, 343--355. MR1849425
- Szabados, Tamás. Strong approximation of fractional Brownian motion by moving averages of simple random walks. Stochastic Process. Appl. 92 (2001), no. 1, 31--60. MR1815178
- Szulga, Jerzy; Molz, Fred. The Weierstrass-Mandelbrot process revisited. J. Statist. Phys. 104 (2001), no. 5-6, 1317--1348. MR1859006
- W. Willinger, M. S. Taqqu, W. E. Leland, and D. V. Wilson, phSelf-similarity in high-speed packet traffic: analysis and modeling of Ethernet traffic measurements., Stat. Sci. 10 (1995), no. 1, 67--85.

This work is licensed under a Creative Commons Attribution 3.0 License.