Download this PDF file Fullscreen Fullscreen Off
References
- Alabert, Aureli; Farré, Mercè; Roy, Rahul. Exit times from equilateral triangles. Appl. Math. Optim. 49 (2004), no. 1, 43--53. MR2023644
- Baernstein, Albert, II. Integral means, univalent functions and circular symmetrization. Acta Math. 133 (1974), 139--169. MR0417406
- Bañuelos, Rodrigo; Carroll, Tom. Brownian motion and the fundamental frequency of a drum. Duke Math. J. 75 (1994), no. 3, 575--602. MR1291697
- D. Betsakos, Personal communication.
- Burkholder, D. L. Exit times of Brownian motion, harmonic majorization, and Hardy spaces. Advances in Math. 26 (1977), no. 2, 182--205. MR0474525
- Davis, Burgess. Brownian motion and analytic functions. Ann. Probab. 7 (1979), no. 6, 913--932. MR0548889
- de Branges, Louis. A proof of the Bieberbach conjecture. Acta Math. 154 (1985), no. 1-2, 137--152. MR0772434
- Driscoll, Tobin A.; Trefethen, Lloyd N. Schwarz-Christoffel mapping. Cambridge Monographs on Applied and Computational Mathematics, 8. Cambridge University Press, Cambridge, 2002. xvi+132 pp. ISBN: 0-521-80726-3 MR1908657
- Duren, Peter L. Univalent functions. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 259. Springer-Verlag, New York, 1983. xiv+382 pp. ISBN: 0-387-90795-5 MR0708494
- Durrett, Richard. Brownian motion and martingales in analysis. Wadsworth Mathematics Series. Wadsworth International Group, Belmont, CA, 1984. xi+328 pp. ISBN: 0-534-03065-3 MR0750829
- Helmes, Kurt; Röhl, Stefan; Stockbridge, Richard H. Computing moments of the exit time distribution for Markov processes by linear programming. Oper. Res. 49 (2001), no. 4, 516--530. MR1852358
- Klebaner, Fima C. Introduction to stochastic calculus with applications. Second edition. Imperial College Press, London, 2005. xiv+416 pp. ISBN: 1-86094-566-X MR2160228
- Knight, Frank B. Essentials of Brownian motion and diffusion. Mathematical Surveys, 18. American Mathematical Society, Providence, R.I., 1981. xiii+201 pp. ISBN: 0-8218-1518-0 MR0613983
- Y.L. Luke, phThe special functions and their approximations, Academic Press, 1969.
- McConnell, Terry R. The size of an analytic function as measured by Lévy's time change. Ann. Probab. 13 (1985), no. 3, 1003--1005. MR0799435
- Øksendal, Bernt. Stochastic differential equations. An introduction with applications. Sixth edition. Universitext. Springer-Verlag, Berlin, 2003. xxiv+360 pp. ISBN: 3-540-04758-1 MR2001996
- W. Rudin, phReal and complex analysis, Tata McGraw-Hill, 2006.
- Spitzer, Frank. Some theorems concerning $2$-dimensional Brownian motion. Trans. Amer. Math. Soc. 87 1958 187--197. MR0104296

This work is licensed under a Creative Commons Attribution 3.0 License.