Download this PDF file Fullscreen Fullscreen Off
References
- N. Berestycki and J. Pitman. Gibbs distributions for random partitions generated by a fragmentation process. J. Stat. Phys. 127 (2007), 381-418. Math. Review 2314353
- C. Cannings. The latent roots of certain Markov chains arising in genetics: a new approach, I. Haploid models. Adv. Appl. Probab. 6 (1974), 260-290. Math. Review 0343949
- C. Cannings. The latent roots of certain Markov chains arising in genetics: a new approach, II. Further haploid models. Adv. Appl. Probab. 7 (1975), 264-282. Math. Review 0371430
- J.C. Gupta. The moment problem for the standard k-dimensional simplex. Sankhya A 61 (1999), 286-291. Math. Review 1714879
- K. Handa. The two-parameter Poisson-Dirichlet point process. Bernoulli 15 (2009), 1082-1116. Math. Review 2597584
- T. Huillet and M. M?hle. Population genetics models with skewed fertilities: a forward and backward analysis. Stochastic Models 27 (2011), 521-554. Math. Review number not yet available.
- S. Karlin and J. McGregor. Direct product branching processes and related Markov chains. Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 598-602. Math. Review 0163362
- S. Karlin and J. McGregor. Direct product branching processes and related Markov chains. I. Calculations of rates of approach to homozygosity. Proc. Internat. Res. Sem., 1965, Springer, Berlin, pp. 111-145. Math. Review 0217892
- J.F.C. Kingman. The coalescent. Stoch. Process. Appl. 13 (1982), 235-248. Math. Review 0671034
- M. M?hle. Total variation distances and rates of convergence for ancestral coalescent processes in exchangeable population models. Adv. Appl. Probab. 32 (2000), 983-993. Math. Review 1808909
- M. M?hle and S. Sagitov. A classification of coalescent processes for haploid exchangeable population models. Ann. Probab. 29 (2001), 1547-1562. Math. Review 1880231
- M. M?hle and S. Sagitov. Coalescent patterns in diploid exchangeable population models. J. Math. Biol. 47 (2003), 337-352. Math. Review 2024501
- J. Schweinsberg. Coalescents with simultaneous multiple collisions. Electron. J. Probab. 5 (2000), 1-50. Math. Review 1781024
- J. Schweinsberg. Coalescent processes obtained from supercritical Galton-Watson processes. Stoch. Process. Appl. 106 (2003), 107-139. Math. Review 1983046
- K. Yosida. Functional Analysis, Sixth Edition, 1980, Springer, Berlin. Math. Review 0617913

This work is licensed under a Creative Commons Attribution 3.0 License.