Download this PDF file Fullscreen Fullscreen Off
References
- K.S. Alexander. Percolation and minimal spanning forests in infinite graphs. Ann. Probab. 23 (1995), no. 1, 87--104. MR1330762 (96c:60114)
- F. Baccelli and C. Bordenave. The radial spanning tree of a Poisson point process. Ann. Appl. Probab. 17 (2007), no. 1, 305--359. MR2292589 (2008a:60025)
- D. Coupier and P. Heinrich. Coexistence probability in the last passage percolation model is 6-8\log2. arXiv:1007.0652 (2010)
- D. Coupier and V.C. Tran. The Directed Spanning Forest is almost surely a tree. arXiv:1010.0773v2 (2010)
- P.A. Ferrari and L.P.R. Pimentel. Competition interfaces and second class particles. Ann. Probab. 33 (2005), no. 4, 1235--1254. MR2150188 (2006e:60141)
- C. Hoffman. Geodesics in first passage percolation. Ann. Appl. Probab. 18 (2008), no. 5, 1944--1969. MR2462555 (2010c:60295)
- C.D. Howard and C.M. Newman. Geodesics and spanning trees for Euclidean first-passage percolation. Ann. Probab. 29 (2001), no. 2, 577--623. MR1849171 (2002f:60189)
- J.B. Martin. Last-passage percolation with general weight distribution. Markov Process. Related Fields 12 (2006), no. 2, 273--299. MR2249632 (2008b:60216)
- J.B. Martin. Private communication (2011).
- H. Rost. Nonequilibrium behaviour of a many particle process: density profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58 (1981), no. 1, 41--53. MR0635270 (83a:60176)

This work is licensed under a Creative Commons Attribution 3.0 License.