Download this PDF file Fullscreen Fullscreen Off
References
- Appuhamillage, T., Bokil, V., Thomann, E., Waymire, E. and
Wood, B.
(2011). Occupation and local times for skew Brownian motion with
application to dispersion along an
interface. Annals of Applied Probability
21 , 183-214.
MR2759199
- Barlow, M.T. (1988). Skew Brownian motion and a
one-dimensional
stochastic differential equation. Stochastics
25 , 1-2.
MR1008231
- Bass, R.F., Burdzy, K. and Chen, Z.Q. (2007).
Pathwise uniqueness for a degenerate stochastic differential equation.
Annals of Probability 35 ,
2385-2418.
MR2353392
- Bass, R. and Pardoux, E. (1987). Uniqueness for diffusions
with
piecewise constant coefficients. Probability Theory and
Related Fields 76 , 557-572.
MR0917679
- Chitashvili, R. J. (1997). On the nonexistence of a strong
solution in the boundary problem for a sticky Brownian motion.
Proc. A. Razmadze Math. Inst. 115 ,
17-31. (Available in preprint
form as CWI Technical Report BS-R8901 (1989), Centre for
Mathematics and Computer Science, Amsterdam.)
MR1639096
- Engelbert, H.J. and Schmidt, W. (1981). On the behaviour of
certain
functionals of the Wiener process
and applications to stochastic differential equations.
Lecture
Notes in Control and Information Sciences 36 ,
47-55. Springer-Verlg, Berlin.
MR0653645
- Engelbert, H.J. and Schmidt, W. (1984). On one-dimensional
stochastic
differential equations with
generalized drift. Lecture Notes in Control and
Information Sciences 69 , 143-155.
Springer-Verlg, Berlin.
MR0798317
- Engelbert, H.J. and Schmidt, W. (1985). On solutions of
stochastic
differential equations without drift. Zeitschrift fuer
Wahrscheinlichkeitstheorie und verwandte
Gebiete 68 , 287-317.
MR0771468
-
Ethier, S. N. and Kurtz, T. G. (1986). Markov processes:
Characterization and Convergence. J. Wiley and Sons, New
York.
MR0838085
- Feller, W. (1952). The parabolic differential equations and
the associated semi-groups of transformations. Ann. Math.
55, 468-519.
MR0047886
- Fernholz, E.R., Ichiba, T., Karatzas, I. and Prokaj, V.
(2011). Planar
diffusions with rank-based characteristics, and perturbed Tanaka
equations. Preprint, Intech Investment Management,
Princeton. Available at
http://arxiv.org/abs/1108.3992 .
- Gihman, I.I. and Skorohod, A.V.
(1972). Stochastic Differential Equations.
Springer Verlag, New York.
MR0263172
- Girsanov, I.V. (1962). An example of non-uniqueness
of the solution to the stochastic differential equation of K. Ito.
Theory of Probability and Its Applications
7 , 325-331.
- Hajek, B. (1985). Mean stochastic comparison of diffusions.
Zeitschrift fuer Wahrscheinlichkeitstheorie und verwandte
Gebiete 68 , 315-329.
MR0771469
- Harrison, J.M. and Shepp, L.A. (1981). On skew Brownian
motion.
Annals of Probability 9 ,
309-313.
MR0606993
- Karatzas, I. and Shreve, S.E. (1991). Brownian
Motion and
Stochastic Calculus.
Second Edition, Springer Verlag, New York.
MR1121940
- Lejay, A. (2006). On the constructions of the skew Brownian
motion.
Probability Surveys 3 , 413-466.
MR2280299
- Mandl, P. (1968). Analytical treatment of
One-Dimensional
Markov Processes. Springer Verlag, New York.
MR0247667
- Manabe, Sh. and Shiga, T. (1973). On one-dimensional
stochastic
differential equations with non-sticky boundary conditions.
Journal of Mathematics Kyoto University 13 ,
595-603.
MR0346907
- Nakao, S. (1972). On the pathwise uniqueness of solutions
of
one-dimensional stochastic differential equations. Osaka
Journal of Mathematics 9 , 513-518.
MR0326840
- Prokaj, V. (2010). The solution of the perturbed Tanaka
equation is
pathwise unique. Annals of Probability , to
appear.
- Revuz, D. and Yor, M. (1999). Continuous
Martingales
and Brownian Motion. Third Edition, Springer Verlag, New
York.
MR1725357
- Walsh, J.B. (1978). A diffusion with a discontinuous local
time. In
Temps Locaux. Asterisque 52-53 ,
37-45.
- Warren, J. (1997). Branching processes, the Ray-Knight
theorem,
and sticky Brownian motion. Lecture Notes in Mathematics
1655 , 1-15.
MR1478711
- Warren, J. (1999). On the joining
of sticky Brownian motion. Lecture Notes in Mathematics
1709 , 257-266. Springer-Verlg, Berlin.
MR1767999
- Zvonkin, A.K. (1974). A transformation on the state-space of a diffusion process that removes the drift. Mathematics of the USSR (Sbornik) 22 , 129-149.

This work is licensed under a Creative Commons Attribution 3.0 License.