Transportation-information inequalities for continuum Gibbs measures
Ran Wang (Wuhan University)
Liming Wu (Chinese Academy of Sciences and Université Blaise Pascal)
Abstract
The objective of this paper is to establish explicit concentration inequalities for the Glauber dynamics related with continuum or discrete Gibbs measures. At first we establish the optimal transportation-information $W_1 I$-inequality for the $M/M/\infty$-queue associated with the Poisson measure, which improves several previous known results. Under the Dobrushin's uniqueness condition, we obtain some explicit $W_1 I$-inequalities for Gibbs measures both in the continuum and in the discrete lattice. Our method is a combination of Lipschitzian spectral gap, the Lyapunov test function approach and the tensorization technique.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 600-613
Publication Date: October 10, 2011
DOI: 10.1214/ECP.v16-1670
References
- L. Bertini, N. Cancrini and F. Cesi. The spectral gap for a Glauber-type dynamic in a continuous gas. Ann. Inst. Henri Poincare Probab. Stat. 38(1)(2004), 91-108. Math Review 2003d:82073
- D. Chafai. Binomial-Poisson inequalities and M/M/°? queue, ESAIMS Probab. Stat. 10(2006), 317-339. Math Review 2007m:60134
- R. L. Dobrushin. The description of a random field by means of conditional probabilities and condition of its regularity. Theory Probab. Appl. 13(1968), 197-224. Math. Review number not available.
- R. L. Dobrushin. Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15(1970), 458-486. Math. Review number not available.
- F. Q. Gao, A. Guillin and L. M. Wu. Berstein type's concentration inequalities for symmetric Markov processes. To appear in SIAM: Theory of Probability and its Applications 2011.
- F. Q. Gao, L. M. Wu. Transportation information inequalities for Gibbs measures. Preprint, 2007.
- A. Guillin, A. Joulin, C. LÃonard and L. M. Wu. Transportation-information inequalities for Markov processes (III): processes with jumps. Preprint, 2008.
- A. Guillin, C. LÃonard, L. M. Wu and N. Yao. Transportation-information inequalities for Markov processes.Probab. Theory Relat. Fields 144(2009), 669-695. Math review 2010k:60062
- A. Guillin, C. LÃonard, F.-Y. Wang and L. M. Wu. Transportation-information inequalities for Markov processes (II): relations with other functional inequalities. Available online at Arxiv 0902.2101
- A. Joulin. A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature. Bernoulli. 15(2)(2009), 532--549. Math Review 2010j:60213
- A. Joulin and Y. Ollivier. Curvature, concentration, and error estimates for Markov chain Monte Carlo. Ann. Probab. 38(6)(2010), 2418-2442. Math Review 2002f:60109
- Yu. Kondratiev and E. Lytvynov. Glauber dynamics of continuous particle systems. Ann. Inst. Henri Poincare Probab. Stat. 41(2005), 685-702. Math Review 2006e:60143
- W. Liu and Y.T. Ma. Spectral gap and convex concentration inequalities for birth-death processes. Ann. Inst. Henri Poincare Probab. Stat. 45(1)(2009), 58--69. Math Review 2010d:60042
- Y. T. Ma, S. Shen, X. Y. Wang and L. M. Wu. Transportation inequalities: from Poisson to Gibbs measures. Bernoulli 17(1) (2011), 155-169. MR2797986
- Y. Ollivier. Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3)(2009), 810--864. Math Review 2010j:58081
- J. Picard. Formules de dualite sur l'espace de Poisson. Ann. Inst. Henri Poincare Probab. Stat. 32(4)(1996), 509--548. Math Review 98c:60055
- C. Preston. Spatial birth-and-death processes, in: Proceedings of the 40th Session of the International Statistical Institute (Warsaw), 2, in Bull. Inst. Internat. Statist. 46(1975), 371-391. Math Review 57 #14170
- D. Ruelle, Statistical Mechanics: Rigorous Results 1969, Benjamin.
- L. M. Wu. A new modified logarithmic Sobolev inequality for Poisson processes and several applications. Probab. Theory Relat. Fields 118(2000), 427-438. Math Review 2002f:60109
- L. M. Wu. Estimate of the spectral gap for continuous gas. Ann. Inst. Henri Poincarà Probab. Stat.40(2004), 387-409. Math Review 2005e: 82007

This work is licensed under a Creative Commons Attribution 3.0 License.