A maximal inequality for stochastic convolutions in 2-smooth Banach spaces
Jiahui Zhu (Delft University of Techonology)
Abstract
Let $(e^{tA})_{t\geq0}$ be a $C_0$-contraction semigroup on a $2$-smooth Banach space $E$, let $(W_t)_{t\geq0}$ be a cylindrical Brownian motion in a Hilbert space $H$, and let $(g_t)_{t\geq0}$ be a progressively measurable process with values in the space $\gamma(H,E)$ of all $\gamma$-radonifying operators from $H$ to $E$. We prove that for all $0<p<\infty$ there exists a constant $C$, depending only on $p$and $E$, such that for all $T\geq0$ we have $$E\sup_{0\leq t\leq T}\left\Vert\int_0^t\!e^{(t-s)A}\,g_sdW_s\right\Vert^p\leq CE\left(\int_0^T\!\left(\left\Vert g_t\right\Vert_{\gamma(H,E)}\right)^2\,dt\right)^{p/2}.$$ For $p\geq2$ the proof is based on the observation that $\psi(x)=\Vert x\Vert^p$ is Fréchet differentiable and its derivative satisfies the Lipschitz estimate $\Vert \psi'(x)-\psi'(y)\Vert\leq C\left(\Vert x\Vert+\Vert y\Vert\right)^{p-2}\Vert x-y\Vert$; the extension to $0<p<2$ proceeds via Lenglart’s inequality.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 689-705
Publication Date: November 20, 2011
DOI: 10.1214/ECP.v16-1677
References
- Anastassiou, G. A.; Dragomir, S. S. On some estimates of the remainder in Taylor's formula. J. Math. Anal. Appl. 263 (2001), no. 1, 246--263. MR1865279 (2002g:26019)
- Assouad, P. Espaces p-lisses et p-convexes, inégalités de Burkholder, Sém. Maurey-Schwartz 1974-1975, Espaces Lp, applications radonifiantes, géometrie des espaces de Banach, Exposé XV, École polytechnique, Centre de Mathématiques, Paris, 1975.
- Brzeźniak, Zdzisław; Hausenblas, Erika; Zhu, Jiahui. Maximal inequality of stochastic convolution driven by compensated Poisson random measures in Banach spaces. arXiv:1005.1600
- Brzeźniak, Zdzisław; Peszat, Szymon. Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces. Stochastic processes, physics and geometry: new interplays, I (Leipzig, 1999), 55--64, CMS Conf. Proc., 28, Amer. Math. Soc., Providence, RI, 2000. MR1803378(2001k:60084)
- Da Prato, Giuseppe; Zabczyk, Jerzy. A note on stochastic convolution. Stochastic Anal. Appl. 10 (1992), no. 2, 143--153. MR1154532 (93e:60116)
- Dettweiler, Egbert. Stochastic integration relative to Brownian motion on a general Banach space. Doğa Mat. 15 (1991), no. 2, 58--97. MR1115509 (93b:60112)
- Deville, Robert; Godefroy, Gilles; Zizler, Václav. Smoothness and renormings in Banach spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, 64. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. xii+376 pp. ISBN: 0-582-07250-6 MR1211634 (94d:46012)
- Figiel, T. On the moduli of convexity and smoothness. Studia Math. 56 (1976), no. 2, 121--155. MR0425581(54 #13535)
- Hausenblas, Erika; Seidler, Jan. A note on maximal inequality for stochastic convolutions. Czechoslovak Math. J. 51(126) (2001), no. 4, 785--790. MR1864042(2002j:60092)
- Ichikawa, Akira. Some inequalities for martingales and stochastic convolutions. Stochastic Anal. Appl. 4 (1986), no. 3, 329--339. MR0857085 (87m:60105)
- Kotelenez, Peter. A submartingale type inequality with applications to stochastic evolution equations. Stochastics 8 (1982/83), no. 2, 139--151. MR0686575 (84h:60115)
- Kotelenez, Peter. A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations. Stochastic Anal. Appl. 2 (1984), no. 3, 245--265. MR0757338 (86k:60096)
- Lenglart, E. Relation de domination entre deux processus. (French) Ann. Inst. H. Poincaré Sect. B (N.S.) 13 (1977), no. 2, 171--179. MR0471069 (57 #10810)
- Leonard, I. E.; Sundaresan, K. Geometry of Lebesgue-Bochner function spaces—smoothness. Trans. Amer. Math. Soc. 198 (1974), 229--251. MR0367652 (51 #3894)
- Neidhardt, A.L. Stochastic integrals in 2-uniformly smooth Banach spaces, Ph.D Thesis, University of Wisconsin, 1978.
- Ondreját, Martin. Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Math. (Rozprawy Mat.) 426 (2004), 63 pp. MR2067962 (2005e:60133)
- Pisier, Gilles. Martingales with values in uniformly convex spaces. Israel J. Math. 20 (1975), no. 3-4, 326--350. MR0394135 (52 #14940)
- Seidler, Jan. Exponential estimates for stochastic convolutions in 2-smooth Banach spaces. Electron. J. Probab. 15 (2010), no. 50, 1556--1573. MR2735374 (2011k:60223)
- Tubaro, L. An estimate of Burkholder type for stochastic processes defined by the stochastic integral. Stochastic Anal. Appl. 2 (1984), no. 2, 187--192. MR0746435 (85h:60072)
- Veraar, M.C.; Weis, L.W. A note on maximal estimates for stochastic convolutions, Czechoslovak Math. J. 61 (2011), no. 3: 743-758.

This work is licensed under a Creative Commons Attribution 3.0 License.