Download this PDF file Fullscreen Fullscreen Off
References
-
O. Angel, J. Goodman, F. den Hollander and G. Slade.
Invasion percolation on regular trees.
Ann. Probab.
36 (2008), 420--466. Math. Review 2009b:60290 -
D.J. Barsky and M. Aizenman.
Percolation critical exponents under the triangle condition.
Ann. Probab.
19 (1991), 1520-1536. Math. Review 93b:60224 -
J. van den Berg, A. A. Jarai and B. Vagvolgyi.
The size of a pond in 2D invasion percolation.
Electron. Comm. Probab.
12 (2007), 411--420. Math. Review 2009c:60265 -
R. Chandler, J. Koplick, K. Lerman and J. F. Willemsen.
Capillary displacement and percolation in porous media.
J. Fluid Mech.
119 (1982), 249--267. -
J. T. Chayes, L. Chayes and C. Newman.
The stochastic geometry of invasion percolation.
Commun. Math. Phys.
101 (1985), 383--407. Math. Review 87i:82072 -
M. Damron and A. Sapozhnikov.
Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters.
Probab. Theor. Rel. Fields.
150(1-2) (2011), 257-294. DOI: 10.1007/s00440-010-0274-y. - M. Damron and A. Sapozhnikov. Limit theorems for $2D$ invasion percolation. To appear in Annals of Probability (2011). arXiv:1005.5696.
-
M. Damron, A. Sapozhnikov and B. Vagvolgyi.
Relations between invasion percolation and critical percolation in two dimensions.
Ann. Probab.
37 (2009), 2297--2331. Math. Review 2011a:60343 - J. Goodman. Exponential growth of ponds for invasion percolation on regular trees. Preprint (2009). arXiv: 0912:5205.
- G. Grimmett. Percolation. (1999) 2nd edition. Springer, Berlin. Math. Review 2001a:60114
- O. Haggstrom, Y. Peres and R. Schonmann. Percolation on transitive graphs as a coalescent process: Relentless merging followed by simultaneous uniqueness. In Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten (M. Bramson and R. Durrett, eds.) (1999) 69--90. Birkhauser, Basel. Math. Review 2000h:60087
-
T. Hara and G. Slade. Mean-field critical behaviour for percolation in high dimensions.
Commun. Math. Phys.
128 (1990), 333-391. Math. Review 91a:82037 -
A. A. Jarai.
Invasion percolation and the incipient infinite cluster in 2D.
Commun. Math. Phys.
236 (2003), 311--334. Math. Review 2004c:82111 -
H. Kesten. The critical probability of bond percolation on the square lattice equals 1/2.
Commun. Math. Phys.
74(1) (1980), 41-59. Math. Review 82c:60179 -
H. Kesten. The incipient infinite cluster in two-dimesional percolation.
Probab. Theor. Rel. Fields.
73 (1986), 369--394. Math. Review 88c:60196 -
H. Kesten.
Scaling relations for 2D percolation.
Commun. Math. Phys.
109 (1987), 109--156. Math. Review 88k:60174 -
G. F. Lawler, O. Schramm and W. Werner.
One-arm exponent for critical 2D percolation.
Electron. J. Probab.
7 (2002), 1-13. Math. Review 2002k:60204 -
R. Lenormand and S. Bories.
Description d'un mecanisme de connexion de liaision destine a l'etude du drainage avec piegeage en milieu poreux.
C.R. Acad. Sci.
291 (1980), 279--282. -
P. Nolin.
Near critical percolation in two-dimensions.
Electron. J. Probab.
13 (2008), 1562--1623. Math. Review 2009k:60215 -
S. Smirnov and W. Werner.
Critical exponents for two-dimensional percolation.
Math. Res. Lett.
8 (2001), 729-744. Math. Review 2003i:60173 -
Y. Zhang. The fractal volume of the two-dimensional invasion percolation cluster.
Commun. Math. Phys.
167 (1995), 237-254. Math. Review 95k:60255

This work is licensed under a Creative Commons Attribution 3.0 License.