Download this PDF file Fullscreen Fullscreen Off
References
- Aldous, David J. The percolation process on a tree where infinite clusters are frozen. Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 3, 465--477. MR1744108
- Bandyopadhyay, Antar. A necessary and sufficient condition for the tail-triviality of a recursive tree process. Sankhyā 68 (2006), no. 1, 1--23. MR2301562
- Benjamini, I. and Schramm, O.: Private communication with David Aldous (1999).
- Bertoin, J.: Fires on trees. Ann. Inst. Henri Poincaré (B) to appear, (2011). ARXIV1011.2308v2
- Brouwer, R.: Percolation, forest-fires and monomer dimers (or the hunt for self-organized criticality). PhD thesis, Vrije Universiteit (2005).
- Drmota, Michael. Random trees. An interplay between combinatorics and probability. SpringerWienNewYork, Vienna, 2009. xviii+458 pp. ISBN: 978-3-211-75355-2 MR2484382
- Liggett, Thomas M. Interacting particle systems. Reprint of the 1985 original. Classics in Mathematics. Springer-Verlag, Berlin, 2005. xvi+496 pp. ISBN: 3-540-22617-6 MR2108619
- Ráth, Balázs. Mean field frozen percolation. J. Stat. Phys. 137 (2009), no. 3, 459--499. MR2564286
- van den Berg, J., de Lima, B. N. and Nolin, P.: A percolation process on the square lattice where large finite clusters are frozen. Random Structures and Algorithms to appear, (2011). ARXIV1006.2050v1
- van den Berg, J.; Tóth, B. A signal-recovery system: asymptotic properties, and construction of an infinite-volume process. Stochastic Process. Appl. 96 (2001), no. 2, 177--190. MR1865354

This work is licensed under a Creative Commons Attribution 3.0 License.