Download this PDF file Fullscreen Fullscreen Off
References
- Asmussen, Søren. Subexponential asymptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities. Ann. Appl. Probab. 8 (1998), no. 2, 354--374. MR1624933
- Asmussen, Søren. Applied probability and queues. Second edition. Applications of Mathematics (New York), 51. Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 2003. xii+438 pp. ISBN: 0-387-00211-1 MR1978607
- Denisov, D. A note on the asymptotics for the maximum on a random time interval of a random walk. Markov Process. Related Fields 11 (2005), no. 1, 165--169. MR2133349
- Denisov, Denis; Foss, Serguei; Korshunov, Dima. Tail asymptotics for the supremum of a random walk when the mean is not finite. Queueing Syst. 46 (2004), no. 1-2, 15--33. MR2072274
- Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. 2, 2nd ed., Wiley, New York. MR0270403
- Foss, Sergey; Korshunov, Dmitry; Zachary, Stan. An introduction to heavy-tailed and subexponential distributions. Springer Series in Operations Research and Financial Engineering. Springer, New York, 2011. x+123 pp. ISBN: 978-1-4419-9472-1 MR2810144
- Foss, Serguei; Palmowski, Zbigniew; Zachary, Stan. The probability of exceeding a high boundary on a random time interval for a heavy-tailed random walk. Ann. Appl. Probab. 15 (2005), no. 3, 1936--1957. MR2152249
- Foss, Serguei; Zachary, Stan. The maximum on a random time interval of a random walk with long-tailed increments and negative drift. Ann. Appl. Probab. 13 (2003), no. 1, 37--53. MR1951993
- Heath, David; Resnick, Sidney; Samorodnitsky, Gennady. Patterns of buffer overflow in a class of queues with long memory in the input stream. Ann. Appl. Probab. 7 (1997), no. 4, 1021--1057. MR1484796
- Iglehart, Donald L. Extreme values in the $GI/G/1$ queue. Ann. Math. Statist. 43 (1972), 627--635. MR0305498
- Klüppelberg, Claudia. Subexponential distributions and integrated tails. J. Appl. Probab. 25 (1988), no. 1, 132--141. MR0929511
- Kugler, J. and Wachtel,V. Upper bounds for the maximum of a random walk with negative drift. ArXiv Preprint: 1107.5400.
- Zachary, Stan. A note on Veraverbeke's theorem. Queueing Syst. 46 (2004), no. 1-2, 9--14. MR2072273

This work is licensed under a Creative Commons Attribution 3.0 License.