A $0$-$1$ law for vertex-reinforced random walks on $\mathbb{Z}$ with weight of order $k^\alpha$, $\alpha\in[0,1/2)$
Abstract
We prove that Vertex Reinforced Random Walk on $\mathbb{Z}$ with weight of order $k^\alpha$, with $\alpha\in [0,1/2)$, is either almost surely recurrent or almost surely transient. This improves a previous result of Volkov who showed that the set of sites which are visited infinitely often was a.s. either empty or infinite.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-8
Publication Date: June 13, 2012
DOI: 10.1214/ECP.v17-2084
References
- Benaïm, Michel. Vertex-reinforced random walks and a conjecture of Pemantle. Ann. Probab. 25 (1997), no. 1, 361--392. MR1428513
- Benaïm, M. and Tarrès, P.: Dynamics of Vertex-Reinforced Random Walks, to appear in phAnn. Probab.
- Cranston, M.; Le Jan, Y. Self-attracting diffusions: two case studies. Math. Ann. 303 (1995), no. 1, 87--93. MR1348356
- Erschler A., Tóth B., Werner W.: Some locally self-interacting walks on the integers, ARXIV1011.1102.
- Erschler A., Tóth B., Werner W.: Stuck Walks, to appear in phProbab. Theory Related Fields.
- Herrmann, Samuel; Roynette, Bernard. Boundedness and convergence of some self-attracting diffusions. Math. Ann. 325 (2003), no. 1, 81--96. MR1957265
- Limic, Vlada; Volkov, Stanislav. VRRW on complete-like graphs: almost sure behavior. Ann. Appl. Probab. 20 (2010), no. 6, 2346--2388. MR2759737
- Pemantle, Robin. Vertex-reinforced random walk. Probab. Theory Related Fields 92 (1992), no. 1, 117--136. MR1156453
- Pemantle, Robin; Volkov, Stanislav. Vertex-reinforced random walk on ${\bf Z}$ has finite range. Ann. Probab. 27 (1999), no. 3, 1368--1388. MR1733153
- Raimond, Olivier. Self-attracting diffusions: case of the constant interaction. Probab. Theory Related Fields 107 (1997), no. 2, 177--196. MR1431218
- Tarrès, Pierre. Vertex-reinforced random walk on $\Bbb Z$ eventually gets stuck on five points. Ann. Probab. 32 (2004), no. 3B, 2650--2701. MR2078554
- Tarrès P.: Localization of reinforced random walks, ARXIV1103.5536.
- Volkov, Stanislav. Vertex-reinforced random walk on arbitrary graphs. Ann. Probab. 29 (2001), no. 1, 66--91. MR1825142
- Volkov, Stanislav. Phase transition in vertex-reinforced random walks on $\Bbb Z$ with non-linear reinforcement. J. Theoret. Probab. 19 (2006), no. 3, 691--700. MR2280515

This work is licensed under a Creative Commons Attribution 3.0 License.