Download this PDF file Fullscreen Fullscreen Off
References
- Borgs, C.; Chayes, J. T.; Kesten, H.; Spencer, J. Uniform boundedness of critical crossing probabilities implies hyperscaling. Statistical physics methods in discrete probability, combinatorics, and theoretical computer science (Princeton, NJ, 1997). Random Structures Algorithms 15 (1999), no. 3-4, 368--413. MR1716769
- Borgs, C.; Chayes, J. T.; Kesten, H.; Spencer, J. The birth of the infinite cluster: finite-size scaling in percolation. Dedicated to Joel L. Lebowitz. Comm. Math. Phys. 224 (2001), no. 1, 153--204. MR1868996
- Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
- Járai, Antal A. Incipient infinite percolation clusters in 2D. Ann. Probab. 31 (2003), no. 1, 444--485. MR1959799
- Kesten, Harry. The incipient infinite cluster in two-dimensional percolation. Probab. Theory Related Fields 73 (1986), no. 3, 369--394. MR0859839
- Kesten, Harry. Scaling relations for $2$D-percolation. Comm. Math. Phys. 109 (1987), no. 1, 109--156. MR0879034
- Nolin, Pierre. Near-critical percolation in two dimensions. Electron. J. Probab. 13 (2008), no. 55, 1562--1623. MR2438816
- van den Berg, J.; Kesten, H. Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 (1985), no. 3, 556--569. MR0799280
- van den Berg, Jacob; de Lima, Bernardo N. B.; Nolin, Pierre. A percolation process on the square lattice where large finite clusters are frozen. Random Structures Algorithms 40 (2012), no. 2, 220--226. MR2877564

This work is licensed under a Creative Commons Attribution 3.0 License.