Large deviation results for random walks conditioned to stay positive
Elinor Mair Jones (University of Leicester)
Abstract
This result is of particular interest as it is related to the bivariate ladder height process $((T_{n},H_{n}),n\geq 0)$, where $T_{r}$ is the $r$th strict increasing ladder time, and $H_{r}=S_{T_{r}}$ the corresponding ladder height. The bivariate renewal mass function $g(n,dx)=\sum_{r=0}^{\infty }P(T_{r}=n,H_{r}\in dx)$ can then be written as $g(n,dx)=P(S_{n}\in dx|\tau >n)P(\tau >n)$, and since the behaviour of $P(\tau >n)$ is known for asymptotically stable random walks, our results can be rephrased as large deviation estimates of $g(n,[x,x+\Delta))$.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-11
Publication Date: August 28, 2012
DOI: 10.1214/ECP.v17-2282
References
- Alili, L.; Doney, R. A. Wiener-Hopf factorization revisited and some applications. Stochastics Stochastics Rep. 66 (1999), no. 1-2, 87--102. MR1687803
- Bingham, N. H.; Goldie, C. M.; Teugels, J. L. Regular variation. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1987. xx+491 pp. ISBN: 0-521-30787-2 MR0898871
- Denisov, D.; Dieker, A. B.; Shneer, V. Large deviations for random walks under subexponentiality: the big-jump domain. Ann. Probab. 36 (2008), no. 5, 1946--1991. MR2440928
- Doney, R. A. A large deviation local limit theorem. Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 3, 575--577. MR0985693
- Doney, R. A. One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Related Fields 107 (1997), no. 4, 451--465. MR1440141
- Doney, R. A. Local behaviour of first passage probabilities. Probab. Theory Related Fields 152 (2012), no. 3-4, 559--588. MR2892956
- Doney, R. A.; Savov, M. S. The asymptotic behavior of densities related to the supremum of a stable process. Ann. Probab. 38 (2010), no. 1, 316--326. MR2599201
- Fuk, D. H.; Nagaev, S. V. Probabilistic inequalities for sums of independent random variables. (Russian) Teor. Verojatnost. i Primenen. 16 (1971), 660--675. MR0293695
- Jones, E. M.: PhD thesis, The University of Manchester, (2008).
- Nagaev, S. V. On the asymptotic behavior of probabilities of one-sided large deviations. (Russian) Teor. Veroyatnost. i Primenen. 26 (1981), no. 2, 369--372. MR0616627
- Pruitt, William E. The growth of random walks and Lévy processes. Ann. Probab. 9 (1981), no. 6, 948--956. MR0632968
- Tchachkuk, S. G.: Limit theorems for sums of independent random variables belonging to the domain of attraction of a stable law. Candidate's dissertation, Tashent (in Russian), (1977).
- Vatutin, Vladimir A.; Wachtel, Vitali. Local probabilities for random walks conditioned to stay positive. Probab. Theory Related Fields 143 (2009), no. 1-2, 177--217. MR2449127
- Wachtel, Vitali. Local limit theorem for the maximum of asymptotically stable random walks. Probab. Theory Related Fields 152 (2012), no. 3-4, 407--424. MR2892952

This work is licensed under a Creative Commons Attribution 3.0 License.