A local limit theorem for random walks in balanced environments
Abstract
Central limit theorems for random walks in quenched random environments have attracted plenty of attention in the past years. More recently still, finer local limit theorems - yielding a Gaussian density multiplied by a highly oscillatory modulating factor - for such models have been obtained. In the one-dimensional nearest-neighbor case with i.i.d. transition probabilities, local limits of uniformly elliptic ballistic walks are now well understood. We complete the picture by proving a similar result for the only recurrent case, namely the balanced one, in which such a walk is diffusive. The method of proof is, out of necessity, entirely different from the ballistic case.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-13
Publication Date: March 8, 2013
DOI: 10.1214/ECP.v18-2336
References
- Bolthausen, Erwin; Goldsheid, Ilya. Lingering random walks in random environment on a strip. Comm. Math. Phys. 278 (2008), no. 1, 253--288. MR2367205 http://dx.doi.org/10.1007/s00220-007-0390-4
- Carlen, E. A.; Kusuoka, S.; Stroock, D. W. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 245--287. MR0898496 http://www.numdam.org/item?id=AIHPB_1987__23_S2_245_0
- Dolgopyat, D.; Goldsheid, I. Local limit theorems for random walks in 1 dimensional random environment. Preprint 2012.
- Goldsheid, Ilya Ya. Simple transient random walks in one-dimensional random environment: the central limit theorem. Probab. Theory Related Fields 139 (2007), no. 1-2, 41--64. MR2322691 http://dx.doi.org/10.1007/s00440-006-0038-x
- Lawler, Gregory F. Weak convergence of a random walk in a random environment. Comm. Math. Phys. 87 (1982/83), no. 1, 81--87. MR0680649 http://projecteuclid.org/getRecord?id=euclid.cmp/1103921905
- Leskelä, Lasse; Stenlund, Mikko. A local limit theorem for a transient chaotic walk in a frozen environment. Stochastic Process. Appl. 121 (2011), no. 12, 2818--2838. MR2844542 http://dx.doi.org/10.1016/j.spa.2011.07.010
- Nash, J. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 1958 931--954. MR0100158
- Papanicolaou, George C.; Varadhan, S. R. S. Diffusions with random coefficients. Statistics and probability: essays in honor of C. R. Rao, pp. 547--552, North-Holland, Amsterdam, 1982. MR0659505
- Peterson, Jonathon Robert. Limiting distributions and large deviations for random walks in random environments. Thesis (Ph.D.)–University of Minnesota. ProQuest LLC, Ann Arbor, MI, 2008. 141 pp. ISBN: 978-0549-71804-8 MR2711962 http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=inf%
- Simula, Tapio; Stenlund, Mikko. Deterministic walks in quenched random environments of chaotic maps. J. Phys. A 42 (2009), no. 24, 245101, 14 pp. MR2515529 http://dx.doi.org/10.1088/1751-8113/42/24/245101
- Tapio Simula and Mikko Stenlund. Multi-Gaussian modes of diffusion in a quenched random medium. Physical Review E, 82(4, Part 1), Oct 27 2010. href http://dx.doi.org/10.1103/PhysRevE.82.041125 pathdoi:10.1103/PhysRevE.82.041125.

This work is licensed under a Creative Commons Attribution 3.0 License.