Download this PDF file Fullscreen Fullscreen Off
References
- Bolthausen, Erwin; Goldsheid, Ilya. Lingering random walks in random environment on a strip. Comm. Math. Phys. 278 (2008), no. 1, 253--288. MR2367205 http://dx.doi.org/10.1007/s00220-007-0390-4
- Carlen, E. A.; Kusuoka, S.; Stroock, D. W. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 245--287. MR0898496 http://www.numdam.org/item?id=AIHPB_1987__23_S2_245_0
- Dolgopyat, D.; Goldsheid, I. Local limit theorems for random walks in 1 dimensional random environment. Preprint 2012.
- Goldsheid, Ilya Ya. Simple transient random walks in one-dimensional random environment: the central limit theorem. Probab. Theory Related Fields 139 (2007), no. 1-2, 41--64. MR2322691 http://dx.doi.org/10.1007/s00440-006-0038-x
- Lawler, Gregory F. Weak convergence of a random walk in a random environment. Comm. Math. Phys. 87 (1982/83), no. 1, 81--87. MR0680649 http://projecteuclid.org/getRecord?id=euclid.cmp/1103921905
- Leskelä, Lasse; Stenlund, Mikko. A local limit theorem for a transient chaotic walk in a frozen environment. Stochastic Process. Appl. 121 (2011), no. 12, 2818--2838. MR2844542 http://dx.doi.org/10.1016/j.spa.2011.07.010
- Nash, J. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 1958 931--954. MR0100158
- Papanicolaou, George C.; Varadhan, S. R. S. Diffusions with random coefficients. Statistics and probability: essays in honor of C. R. Rao, pp. 547--552, North-Holland, Amsterdam, 1982. MR0659505
- Peterson, Jonathon Robert. Limiting distributions and large deviations for random walks in random environments. Thesis (Ph.D.)–University of Minnesota. ProQuest LLC, Ann Arbor, MI, 2008. 141 pp. ISBN: 978-0549-71804-8 MR2711962 http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=inf%
- Simula, Tapio; Stenlund, Mikko. Deterministic walks in quenched random environments of chaotic maps. J. Phys. A 42 (2009), no. 24, 245101, 14 pp. MR2515529 http://dx.doi.org/10.1088/1751-8113/42/24/245101
- Tapio Simula and Mikko Stenlund. Multi-Gaussian modes of diffusion in a quenched random medium. Physical Review E, 82(4, Part 1), Oct 27 2010. href http://dx.doi.org/10.1103/PhysRevE.82.041125 pathdoi:10.1103/PhysRevE.82.041125.

This work is licensed under a Creative Commons Attribution 3.0 License.