Download this PDF file Fullscreen Fullscreen Off
References
- Bezuidenhout, Carol; Grimmett, Geoffrey. The critical contact process dies out. Ann. Probab. 18 (1990), no. 4, 1462--1482. MR1071804
- Broman, Erik I. Stochastic domination for a hidden Markov chain with applications to the contact process in a randomly evolving environment. Ann. Probab. 35 (2007), no. 6, 2263--2293. MR2353388
- Comets, Francis; Yoshida, Nobuo. Branching random walks in space-time random environment: survival probability, global and local growth rates. J. Theoret. Probab. 24 (2011), no. 3, 657--687. MR2822477
- R. Fukushima and N. Yoshida. On exponential growth for a certain class of linear systems. ALEA Lat. Am. J. Probab. Math. Stat., 9(2):323--336, 2012.
- Olivier Garet and Régine Marchand. Growth of a population of bacteria in a dynamical hostile environment, ARXIV1010.4618 preprint, 2012.
- Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
- Harris, T. E. A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc. 56 1960 13--20. MR0115221
- Hu, Yueyun; Yoshida, Nobuo. Localization for branching random walks in random environment. Stochastic Process. Appl. 119 (2009), no. 5, 1632--1651. MR2513122
- Liggett, Thomas M. Stochastic interacting systems: contact, voter and exclusion processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 324. Springer-Verlag, Berlin, 1999. xii+332 pp. ISBN: 3-540-65995-1 MR1717346
- Steif, Jeffrey E.; Warfheimer, Marcus. The critical contact process in a randomly evolving environment dies out. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008), 337--357. MR2461788
- Yao, Qiang; Chen, Xinxing. The complete convergence theorem holds for contact processes in a random environment on $\Bbb{Z}^ d\times\Bbb{Z}^ +$. Stochastic Process. Appl. 122 (2012), no. 9, 3066--3100. MR2946436
- Yoshida, Nobuo. Central limit theorem for branching random walks in random environment. Ann. Appl. Probab. 18 (2008), no. 4, 1619--1635. MR2434183

This work is licensed under a Creative Commons Attribution 3.0 License.