Download this PDF file Fullscreen Fullscreen Off
References
- R. Albert, A.-L. Barabási, and H. Jeong. Mean-field theory for scale-free random networks. Physica A, 272:173--187, 1999.
- Barabási, Albert-László; Albert, Réka. Emergence of scaling in random networks. Science 286 (1999), no. 5439, 509--512. MR2091634
- Bollobás, Béla; Riordan, Oliver; Spencer, Joel; Tusnády, Gábor. The degree sequence of a scale-free random graph process. Random Structures Algorithms 18 (2001), no. 3, 279--290. MR1824277
- Dereich, Steffen; Mörters, Peter. Random networks with sublinear preferential attachment: degree evolutions. Electron. J. Probab. 14 (2009), no. 43, 1222--1267. MR2511283
- Dereich, Steffen; Mörters, Peter. Random networks with concave preferential attachment rule. Jahresber. Dtsch. Math.-Ver. 113 (2011), no. 1, 21--40. MR2760002
- Evans, T. S.; Saramäki, J. P. Scale-free networks from self-organization. Phys. Rev. E (3) 72 (2005), no. 2, 026138, 14 pp. MR2177389
- Freedman, David A. Bernard Friedman's urn. Ann. Math. Statist 36 1965 956--970. MR0177432
- Pemantle, Robin. A survey of random processes with reinforcement. Probab. Surv. 4 (2007), 1--79. MR2282181
- Saramäki, Jari; Kaski, Kimmo. Scale-free networks generated by random walkers. Phys. A 341 (2004), no. 1-4, 80--86. MR2092677
- Simon, Herbert A. On a class of skew distribution functions. Biometrika 42 (1955), 425--440. MR0073085
- G. U. Yule. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philosophical Transactions of the Royal Society of London, B, 213:21--87, 1925.

This work is licensed under a Creative Commons Attribution 3.0 License.