Download this PDF file Fullscreen Fullscreen Off
References
- Basse-O'Connor, A. and Rosinski, J.: On the uniform convergence of random series in Skorohod space and representations of cadlag infinitely divisible processes. Ann. Probab., (2012), to appear.
- Berti, Patrizia; Pratelli, Luca; Rigo, Pietro. Skorohod representation theorem via disintegrations. Sankhya A 72 (2010), no. 1, 208--220. MR2658171
- Berti, Patrizia; Pratelli, Luca; Rigo, Pietro. A Skorohod representation theorem for uniform distance. Probab. Theory Related Fields 150 (2011), no. 1-2, 321--335. MR2800912
- Blackwell, David. On a class of probability spaces. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, pp. 1--6. University of California Press, Berkeley and Los Angeles, 1956. MR0084882
- Dudley, R. M. Distances of probability measures and random variables. Ann. Math. Statist 39 1968 1563--1572. MR0230338
- Dudley, R. M. Uniform central limit theorems. Cambridge Studies in Advanced Mathematics, 63. Cambridge University Press, Cambridge, 1999. xiv+436 pp. ISBN: 0-521-46102-2 MR1720712
- Jain, Naresh C.; Monrad, Ditlev. Gaussian measures in $B_{p}$. Ann. Probab. 11 (1983), no. 1, 46--57. MR0682800
- Jakubowski, A. The almost sure Skorokhod representation for subsequences in nonmetric spaces. Teor. Veroyatnost. i Primenen. 42 (1997), no. 1, 209--216; translation in Theory Probab. Appl. 42 (1997), no. 1, 167--174 (1998) MR1453342
- Kallenberg, Olav. Foundations of modern probability. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2 MR1876169
- Ramachandran, D.; Rüschendorf, L. A general duality theorem for marginal problems. Probab. Theory Related Fields 101 (1995), no. 3, 311--319. MR1324088
- Sethuraman, Jayaram. Some extensions of the Skorohod representation theorem. Special issue in memory of D. Basu. Sankhyā Ser. A 64 (2002), no. 3, part 2, 884--893. MR1981517
- Skorohod, A. V. Limit theorems for stochastic processes. (Russian) Teor. Veroyatnost. i Primenen. 1 (1956), 289--319. MR0084897
- van der Vaart, Aad W.; Wellner, Jon A. Weak convergence and empirical processes. With applications to statistics. Springer Series in Statistics. Springer-Verlag, New York, 1996. xvi+508 pp. ISBN: 0-387-94640-3 MR1385671
- Wichura, Michael J. On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann. Math. Statist. 41 1970 284--291. MR0266275

This work is licensed under a Creative Commons Attribution 3.0 License.